Open In App
Related Articles

Find pair of integers such that their sum is twice their Bitwise XOR

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given a positive integer N, the task is to find all pairs of integers (i, j) from the range [1, N] in increasing order of i such that:

  • 1 ? i, j ? N
  • i + j = N
  • i + j = 2*(i ^ j)
  • If there are no such pairs, return a pair {-1, -1}.

Note: Here ‘^’ denotes the bitwise XOR operation.

Examples:

Input: N = 4
Output: {{1, 3}, {3, 1}}
Explanation: A total of 3 pairs satisfy the first condition: (1, 3), (2, 2), (3, 1).
There are only two valid pairs out of them: (1, 3) and (3, 1) as 1 + 3 = 4 = 2 * (1 ^ 3).

Input: 7
Output: {-1, -1}

Input: 144
Output: {{36, 108},  {44, 100}, {100, 44},  {108, 36 }}

Approach: 

The problem can be viewed as a bitwise manipulation problem satisfying pre-conditions. 

If the pairs add upto N then it is obvious that the second element j of the pair can be generated using the first element i as j = N – i. Then we just have to check for the remaining condition  i + j = 2 * (i ^ j).

Follow the steps mentioned below to solve the problem:

  • Traverse from 1 to N for first element i and second element as j = N – i.
  • Check for N = i + j and N = 2 * (i ^ j) and push the first elements i and j into the 2-D vector ans and increment count.
  • Return {-1,  -1} if count = 0 or ans, if count > 0.

Below is the implementation of the above approach.

C++14

// C++ code to solve using above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the pair
vector<vector<int> > solve(int& N)
{
    vector<int> x, y;
    int count = 0;
    vector<vector<int> > ans;
 
    // For each element from 1 to N
    // check whether i + j = 2 * (i^j)
    // where j = N - i
    for (int i = 1; i <= N; i++) {
        int j = N - i;
 
        if (N == 2 * (i ^ j)) {
 
            // Insert the pair into answer
            ans.push_back({ i, j });
 
            // Increase count accordingly
            count++;
        }
    }
 
    if (count == 0)
        return { { -1, -1 } };
 
    return ans;
}
 
// Function to print the pairs
void printPairs(int& N)
{
    vector<vector<int> > ans = solve(N);
    for (auto& x : ans) {
        for (auto& y : x)
            cout << y << " ";
        cout << endl;
    }
}
 
// Driver code
int main()
{
    int N = 144;
 
    // Function call
    printPairs(N);
    return 0;
}

                    

Java

import java.util.*;
 
class Solve {
  public static void main(String[] args) {
    int N = 144;
    printFunction(N);
  }
 
  private static void printFunction(int N){
    int count = 0, j = 0;
    ArrayList<Integer> x = new ArrayList<Integer>();
 
    for (int i = 1; i <= N; i++)
    {
 
      // logic for j since i+j=N
      j = N - i;
      if (N == 2 * (i ^ j)) {
 
        // Insert the pair into answer
        x.add(i);
        x.add(j);
        // Increase count accordingly
        count++;
      }
 
    }
 
    if(count == 0)
    {
      x.add(-1);
      x.add(-1);
 
      // loop for printing the elements in x
      for(int i = 0; i < x.size(); i = i + 2)
      {
        System.out.print(x.get(i));
        System.out.printf("%d", x.get(i + 1));
        System.out.println();
      }
 
    }else
    {
       
      // loop for printing the elements in x
      for(int i = 0; i < x.size(); i = i + 2)
      {
        System.out.print(x.get(i));
        System.out.printf("  %d", x.get(i + 1));
        System.out.println();
      }
    }
  }   
}
 
// This code is contributed by msdsk07.

                    

Python3

# python code to solve using above approach
 
# Function to find the pair
def solve(N):
 
    x, y = [], []
    count = 0
    ans = []
 
    # For each element from 1 to N
    # check whether i + j = 2 * (i^j)
    # where j = N - i
    for i in range(1, N + 1):
        j = N - i
 
        if (N == 2 * (i ^ j)):
 
            # Insert the pair into answer
            ans.append([i, j])
 
            # Increase count accordingly
            count += 1
 
    if (count == 0):
        return [[-1, -1]]
 
    return ans
 
# Function to print the pairs
def printPairs(N):
 
    ans = solve(N)
    for x in ans:
        for y in x:
            print(y, end=" ")
        print()
 
# Driver code
if __name__ == "__main__":
    N = 144
 
    # Function call
    printPairs(N)
 
    # This code is contributed by rakeshsahni

                    

C#

// C# Code to implement above approach
 
using System;
using System.Collections;
using System.Collections.Generic;
 
class Solve {
  public static void Main(string[] args)
  {
    int N = 144;
    printFunction(N);
  }
 
  private static void printFunction(int N)
  {
    int count = 0, j = 0;
    List<int> x = new List<int>();
 
    for (int i = 1; i <= N; i++) {
 
      // logic for j since i+j=N
      j = N - i;
      if (N == 2 * (i ^ j)) {
 
        // Insert the pair into answer
        x.Add(i);
        x.Add(j);
        // Increase count accordingly
        count++;
      }
    }
 
    if (count == 0) {
      x.Add(-1);
      x.Add(-1);
 
      // loop for printing the elements in x
      for (int i = 0; i < x.Count; i = i + 2) {
        Console.Write(x[i]);
        Console.Write(" " + x[i + 1]);
        Console.WriteLine();
      }
    }
    else {
 
      // loop for printing the elements in x
      for (int i = 0; i < x.Count; i = i + 2) {
        Console.Write(x[i]);
        Console.Write(" " + x[i + 1]);
        Console.WriteLine();
      }
    }
  }
}
 
// This code is contributed by karandeep1234.

                    

Javascript

// JavaScript+ code to solve using above approach
 
// Function to find the pair
function solve(N)
{
    let x = [], y = [];
    let count = 0;
    let ans = [];
 
    // For each element from 1 to N
    // check whether i + j = 2 * (i^j)
    // where j = N - i
    for (let i = 1; i <= N; i++) {
        let j = N - i;
 
        if (N == 2 * (i ^ j)) {
 
            // Insert the pair into answer
            ans.push([ i, j ]);
 
            // Increase count accordingly
            count++;
        }
    }
 
    if (count == 0)
        return [ [ -1, -1 ]];
 
    return ans;
}
 
// Function to print the pairs
function printPairs(N)
{
    let ans = solve(N);
    console.log(ans);
}
 
// Driver code
    let N = 144;
 
    // Function call
    printPairs(N);
 
// This code is contributed by ishankhandelwals.

                    

Output
36 108 
44 100 
100 44 
108 36 

Time Complexity: O(N)
Auxiliary Space: O(N)



Last Updated : 27 Apr, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads