Open In App
Related Articles

Number of perfect squares between two given numbers

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two given numbers a and b where 1<=a<=b, find the number of perfect squares between a and b (a and b inclusive).
Examples 
 

Input :  a = 3, b = 8
Output : 1
The only perfect square in given range is 4.

Input : a = 9, b = 25
Output : 3
The three perfect squares in given range are 9, 
16 and 25
Recommended Practice

Below is the implementation of above idea :  

C++




// A Simple Method to count squares between a and b
#include <bits/stdc++.h>
using namespace std;
 
int countSquares(int a, int b)
{
    int cnt = 0; // Initialize result
 
    // Traverse through all numbers
    for (int i = a; i <= b; i++)
 
        // Check if current number 'i' is perfect
        // square
        for (int j = 1; j * j <= i; j++)
            if (j * j == i)
                cnt++;
 
    return cnt;
}
 
// Driver code
int main()
{
    int a = 9, b = 25;
    cout << "Count of squares is "
         << countSquares(a, b);
    return 0;
}


Java




// Java program to count squares between a and b
class CountSquares {
 
    static int countSquares(int a, int b)
    {
        int cnt = 0; // Initialize result
 
        // Traverse through all numbers
        for (int i = a; i <= b; i++)
 
            // Check if current number 'i' is perfect
            // square
            for (int j = 1; j * j <= i; j++)
                if (j * j == i)
                    cnt++;
        return cnt;
    }
}
 
// Driver Code
public class PerfectSquares {
    public static void main(String[] args)
    {
        int a = 9, b = 25;
        CountSquares obj = new CountSquares();
        System.out.print("Count of squares is " + obj.countSquares(a, b));
    }
}


Python3




# Python program to count squares between a and b
 
def CountSquares(a, b):
 
    cnt = 0 # initialize result
 
    # Traverse through all numbers
    for i in range (a, b + 1):
        j = 1;
        while j * j <= i:
            if j * j == i:
                 cnt = cnt + 1
            j = j + 1
        i = i + 1
    return cnt
 
# Driver Code
a = 9
b = 25
print ("Count of squares is:", CountSquares(a, b))


C#




// C# program to count squares
// between a and b
using System;
 
class GFG {
 
    // Function to count squares
    static int countSquares(int a, int b)
    {
        // Initialize result
        int cnt = 0;
 
        // Traverse through all numbers
        for (int i = a; i <= b; i++)
 
            // Check if current number
            // 'i' is perfect square
            for (int j = 1; j * j <= i; j++)
                if (j * j == i)
                    cnt++;
        return cnt;
    }
 
    // Driver Code
    public static void Main()
    {
        int a = 9, b = 25;
        Console.Write("Count of squares is " + countSquares(a, b));
    }
}
 
// This code is contributed by Sam007


PHP




<?php
// A Simple Method to count squares
//between a and b
 
function countSquares($a, $b)
{
    $cnt = 0; // Initialize result
 
    // Traverse through all numbers
    for ($i = $a; $i <= $b; $i++)
 
        // Check if current number
        // 'i' is perfect square
        for ($j = 1; $j * $j <= $i;
                              $j++)
            if ($j * $j == $i)
                $cnt++;
 
    return $cnt;
}
 
// Driver code
 
    $a = 9; $b = 25;
    echo "Count of squares is ".
              countSquares($a, $b);
 
// This code is contributed by ajit.
?>


Javascript




<script>
// A Simple Method to count squares
//between a and b
 
function countSquares(a, b)
{
   let cnt = 0;
    
    // Traverse through all numbers
    for (let i = a; i <= b; i++)
 
        // Check if current number
        // 'i' is perfect square
        for (let j = 1; j * j <= i;j++)
            if (j * j == i)
                cnt++;
 
    return cnt;
}
 
// Driver code
 
    let a = 9;
    let b = 25;
    document.write( "Count of squares is ",
              countSquares(a, b));
 
// This code is contributed by sravan.
</script>


Output

Count of squares is 3

An upper bound on time Complexity of this solution is O((b-a) * sqrt(b)).
Method 2 (Efficient) We can simply take square root of ‘a’ and square root of ‘b’ and count the perfect squares between them using 
 

floor(sqrt(b)) - ceil(sqrt(a)) + 1

We take floor of sqrt(b) because we need to consider 
numbers before b.

We take ceil of sqrt(a) because we need to consider 
numbers after a.


For example, let b = 24, a = 8.  floor(sqrt(b)) = 4, 
ceil(sqrt(a)) = 3.  And number of squares is 4 - 3 + 1
= 2. The two numbers are 9 and 16.

Below is the implementation of above idea :
 

C++




// An Efficient Method to count squares between a and b
#include <bits/stdc++.h>
using namespace std;
 
// An efficient solution to count square between a
// and b
int countSquares(int a, int b)
{
    return (floor(sqrt(b)) - ceil(sqrt(a)) + 1);
}
 
// Driver code
int main()
{
    int a = 9, b = 25;
    cout << "Count of squares is "
         << countSquares(a, b);
    return 0;
}


Java




// An Efficient method to count squares between
// a and b
class CountSquares {
    double countSquares(int a, int b)
    {
        return (Math.floor(Math.sqrt(b)) - Math.ceil(Math.sqrt(a)) + 1);
    }
}
 
// Driver Code
public class PerfectSquares {
    public static void main(String[] args)
    {
        int a = 9, b = 25;
        CountSquares obj = new CountSquares();
        System.out.print("Count of squares is " + (int)obj.countSquares(a, b));
    }
}


Python3




# An Efficient Method to count squares between a
# and b
import math
def CountSquares(a, b):
    return (math.floor(math.sqrt(b)) - math.ceil(math.sqrt(a)) + 1)
 
# Driver Code
a = 9
b = 25
print ("Count of squares is:", int(CountSquares(a, b)))


C#




// C# program for efficient method
// to count squares between a & b
using System;
 
class GFG {
 
    // Function to count squares
    static double countSquares(int a, int b)
    {
        return (Math.Floor(Math.Sqrt(b)) - Math.Ceiling(Math.Sqrt(a)) + 1);
    }
 
    // Driver Code
    public static void Main()
    {
        int a = 9, b = 25;
        Console.Write("Count of squares is " + (int)countSquares(a, b));
    }
}
 
// This code is contributed by Sam007.


PHP




<?php
// An Efficient PHP code to count
// squares between a and b
 
// Method to count square
// between a and b
function countSquares($a, $b)
{
    return (floor(sqrt($b)) -
            ceil(sqrt($a)) + 1);
}
 
// Driver code
{
    $a = 9;
    $b = 25;
    echo "Count of squares is ",
           countSquares($a, $b);
    return 0;
}
// This code is contributed by nitin mittal.
?>


Javascript




<script>
// A Simple Method to count squares
//between a and b
 
function countSquares(a, b)
{
   return (Math.floor(Math.sqrt(b)) -  Math.ceil(Math.sqrt(a)) + 1);
}
 
// Driver code
 
    let a = 9;
    let b = 25;
    document.write( "Count of squares is ",
              countSquares(a, b));
 
// This code is contributed by sravan.
</script>


Output

Count of squares is 3

Time Complexity: O(logn)

Auxiliary Space: O(1)
Time complexity of this solution is O(Log b). A typical implementation of square root for a number n takes time equal to O(Log n) [See this for a sample implementation of square root] 

If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 01 Sep, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials