Open In App

Subsets of size K with product equal to difference of two perfect squares

Improve
Improve
Like Article
Like
Save
Share
Report

Given a distinct integers array arr[] of size N and an integer K, the task is to count the number of subsets of size K of array whose product of elements can be represented as a2 – b2. Examples:

Input: arr[] = {1, 2, 3} K = 2 Output: 2 Explanation: All possible subsets of length 2 with their products are given below: {1, 2} = 2 {2, 3} = 6 {1, 3} = 3 Since, only 3 can be expressed as (22 – 12, therefore only one such subset exists. Input: arr[] = {2, 5, 6} K = 2 Output: 2 Explanation: All possible contiguous sub-sequences with their products given below: {2, 5} = 10 {2, 6} = 12 {5, 6} = 30 Since, only 12 can be expressed as (42 – 22), only one such subset exists.

Approach:

  1. Generate all subsets of size K.
  2. Calculate the products of all subsets.
  3. A number can be represented as the difference of square of two numbers only if it is odd or divisible by 4.
  4. Hence, count all subsets with product that satisfies this condition.

Below is the implementation of the above approach: 

C++




// C++ Code
#include <bits/stdc++.h>
using namespace std;
 
vector<vector<int> > combs;
void combinationUtil(int arr[], int data[], int start,
                     int end, int index, int r)
{
   
  // Current combination is ready to be printed, print it
  if (index == r) {
    vector<int> comb;
    for (int j = 0; j < r; j++)
      comb.push_back(data[j]);
    combs.push_back(comb);
    return;
  }
 
  // replace index with all possible elements. The
  // condition "end-i+1 >= r-index" makes sure that
  // including one element at index will make a
  // combination with remaining elements at remaining
  // positions
  for (int i = start;
       i <= end && end - i + 1 >= r - index; i++) {
    data[index] = arr[i];
    combinationUtil(arr, data, i + 1, end, index + 1,
                    r);
  }
}
 
// Count of required sub-sequences
int count_seq(int arr[], int n, int k)
{
 
  // ans is Count variable
  int ans = 0;
 
  for (vector<int> seq : combs) {
 
    // product of seq
    int pro = 1;
 
    for (int ele : seq)
      pro *= ele;
 
    // checking form of a2-b2
    if ((pro % 4) != 2)
      ans += 1;
  }
 
  return ans;
}
 
// Driver Code
int main()
{
 
  int arr[] = { 2, 5, 6 };
  int n = sizeof(arr) / sizeof(arr[0]);
  int k = 2;
  int data[k];
  combinationUtil(arr, data, 0, n - 1, 0, k);
  cout << count_seq(arr, n, k) << endl;
  return 0;
}
 
// This code is contributed by akashish__


Java




/*package whatever //do not write package name here */
import java.util.*;
 
class GFG {
  static List<List<Integer>> combs = new ArrayList<>();
  static void combinationUtil(int arr[], int data[], int start,
                              int end, int index, int r)
  {
    // Current combination is ready to be printed, print it
    if (index == r)
    {
      List<Integer> comb = new ArrayList<>();
      for (int j=0; j<r; j++)
        comb.add(data[j]);
      combs.add(comb);
      return;
    }
 
    // replace index with all possible elements. The condition
    // "end-i+1 >= r-index" makes sure that including one element
    // at index will make a combination with remaining elements
    // at remaining positions
    for (int i=start; i<=end && end-i+1 >= r-index; i++)
    {
      data[index] = arr[i];
      combinationUtil(arr, data, i+1, end, index+1, r);
    }
  }
 
  // Count of required sub-sequences
  static int count_seq(int []arr, int n,int k){
 
    // ans is Count variable
    int ans = 0;
 
    for(List<Integer> seq:combs){
 
      // product of seq
      int pro = 1;
 
      for(int ele:seq)
        pro *= ele;
 
      // checking form of a2-b2
      if ((pro % 4) != 2)
        ans += 1;
    }
 
    return ans;
 
  }
 
 
  public static void main (String[] args)
  {
 
    int []arr = {2, 5, 6};
    int n = arr.length;
    int k = 2;
 
    combinationUtil(arr,new int[k],0, n-1, 0, k);
 
    System.out.println(count_seq(arr, n, k));
  }
}
 
// This code is contributed by aadityaburujwale.


Python3




# Python3 implementation of the approach
 
import itertools
 
# Function to return the
# Count of required sub-sequences
def count_seq(arr, n, k):
 
    # ans is Count variable
    ans = 0
 
    for seq in itertools.combinations(arr, k):
 
        # product of seq
        pro = 1
     
        for ele in seq:
            pro *= ele
     
        # checking form of a2-b2
        if ((pro % 4) != 2):
            ans += 1
    return ans
 
# Driver code
if __name__ == "__main__":
    arr = [2, 5, 6]
    n = len(arr)
    k = 2
    print(count_seq(arr, n, k))


C#




using System;
using System.Collections.Generic;
 
public class GFG {
  static List<List<int> > combs = new List<List<int> >();
  static void combinationUtil(int[] arr, int[] data,
                              int start, int end,
                              int index, int r)
  {
    // Current combination is ready to be printed, print
    // it
    if (index == r) {
      List<int> comb = new List<int>();
      for (int j = 0; j < r; j++)
        comb.Add(data[j]);
      combs.Add(comb);
      return;
    }
 
    // replace index with all possible elements. The
    // condition "end-i+1 >= r-index" makes sure that
    // including one element at index will make a
    // combination with remaining elements at remaining
    // positions
    for (int i = start;
         i <= end && end - i + 1 >= r - index; i++) {
      data[index] = arr[i];
      combinationUtil(arr, data, i + 1, end,
                      index + 1, r);
    }
  }
 
  // Count of required sub-sequences
  static int count_seq(int[] arr, int n, int k)
  {
    // ans is Count variable
    int ans = 0;
 
    foreach(List<int> seq in combs)
    {
      // product of seq
      int pro = 1;
 
      foreach(int ele in seq) pro *= ele;
 
      // checking form of a2-b2
      if ((pro % 4) != 2)
        ans += 1;
    }
 
    return ans;
  }
 
  static public void Main()
  {
    int[] arr = { 2, 5, 6 };
    int n = arr.Length;
    int k = 2;
 
    combinationUtil(arr, new int[k], 0, n - 1, 0, k);
 
    Console.WriteLine(count_seq(arr, n, k));
  }
}
 
// This code is contributed by akashish__


Javascript




// JavaScript Code
const combs = [];
function combinationUtil(arr, data, start, end, index, r) {
  // Current combination is ready to be printed, print it
  if (index == r) {
    let comb = [];
    for (let j = 0; j < r; j++) {
      comb.push(data[j]);
    }
    combs.push(comb);
    return;
  }
 
  // replace index with all possible elements. The
  // condition "end-i+1 >= r-index" makes sure that
  // including one element at index will make a
  // combination with remaining elements at remaining
  // positions
  for (let i = start; i <= end && end - i + 1 >= r - index; i++) {
    data[index] = arr[i];
    combinationUtil(arr, data, i + 1, end, index + 1, r);
  }
}
 
// Count of required sub-sequences
function count_seq(arr, n, k) {
  // ans is Count variable
  let ans = 0;
 
  for (let seq of combs) {
    // product of seq
    let pro = 1;
 
    for (let ele of seq) {
      pro *= ele;
    }
 
    // checking form of a2-b2
    if ((pro % 4) != 2) {
      ans += 1;
    }
  }
 
  return ans;
}
 
// Driver Code
let arr = [2, 5, 6];
let n = arr.length;
let k = 2;
let data = new Array(k);
combinationUtil(arr, data, 0, n - 1, 0, k);
console.log(count_seq(arr, n, k));
// contributed by akashish__


Output:

1


Last Updated : 15 Feb, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads