Number of perfect squares between two given numbers

Given two given numbers a and b where 1<=a<=b, find the number of perfect squares between a and b (a and b inclusive).

Examples

Input :  a = 3, b = 8
Output : 1
The only perfect in given range is 4.

Input : a = 9, b = 25
Output : 3
The three squares in given range are 9, 
16 and 25

Method 1 : One naive approach is to check all the numbers between a and b (inclusive a and b) and increase count by one whenever we encounter a perfect square.



Below is the implementation of above idea :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// A Simple Method to count squares between a and b
#include <bits/stdc++.h>
using namespace std;
  
int countSquares(int a, int b)
{
    int cnt = 0; // Initialize result
  
    // Traverse through all numbers
    for (int i = a; i <= b; i++)
  
        // Check if current number 'i' is perfect
        // square
        for (int j = 1; j * j <= i; j++)
            if (j * j == i)
                cnt++;
  
    return cnt;
}
  
// Driver code
int main()
{
    int a = 9, b = 25;
    cout << "Count of squares is "
         << countSquares(a, b);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count squares between a and b
class CountSquares {
  
    static int countSquares(int a, int b)
    {
        int cnt = 0; // Initialize result
  
        // Traverse through all numbers
        for (int i = a; i <= b; i++)
  
            // Check if current number 'i' is perfect
            // square
            for (int j = 1; j * j <= i; j++)
                if (j * j == i)
                    cnt++;
        return cnt;
    }
}
  
// Driver Code
public class PerfectSquares {
    public static void main(String[] args)
    {
        int a = 9, b = 25;
        CountSquares obj = new CountSquares();
        System.out.print("Count of squares is " + obj.countSquares(a, b));
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to count squares between a and b
  
def CountSquares(a, b):
  
    cnt = 0 # initialize result
  
    # Traverse through all numbers
    for i in range (a, b + 1):
        j = 1;
        while j * j <= i:
            if j * j == i:
                 cnt = cnt + 1
            j = j + 1
        i = i + 1
    return cnt
  
# Driver Code
a = 9
b = 25
print "Count of squares is:", CountSquares(a, b)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count squares
// between a and b
using System;
  
class GFG {
  
    // Function to count squares
    static int countSquares(int a, int b)
    {
        // Initialize result
        int cnt = 0;
  
        // Traverse through all numbers
        for (int i = a; i <= b; i++)
  
            // Check if current number
            // 'i' is perfect square
            for (int j = 1; j * j <= i; j++)
                if (j * j == i)
                    cnt++;
        return cnt;
    }
  
    // Driver Code
    public static void Main()
    {
        int a = 9, b = 25;
        Console.Write("Count of squares is " + countSquares(a, b));
    }
}
  
// This code is contributed by Sam007

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// A Simple Method to count squares
//between a and b
  
function countSquares($a, $b)
{
    $cnt = 0; // Initialize result
  
    // Traverse through all numbers
    for ($i = $a; $i <= $b; $i++)
  
        // Check if current number
        // 'i' is perfect square
        for ($j = 1; $j * $j <= $i;
                              $j++)
            if ($j * $j == $i)
                $cnt++;
  
    return $cnt;
}
  
// Driver code
  
    $a = 9; $b = 25;
    echo "Count of squares is ".
              countSquares($a, $b);
  
// This code is contributed by ajit.
?>

chevron_right


Output :

Count of squares is 3

An upper bound on time Complexity of this solution is O((b-a) * sqrt(b)).

 



Method 2 (Efficient) We can simply take square root of ‘a’ and square root of ‘b’ and count the perfect squares between them using

floor(sqrt(b)) - ceil(sqrt(a)) + 1

We take floor of sqrt(b) because we need to consider 
numbers before b.

We take ceil of sqrt(a) because we need to consider 
numbers after a.


For example, let b = 24, a = 8.  floor(sqrt(b)) = 4, 
ceil(sqrt(a)) = 3.  And number of squares is 4 - 3 + 1
= 2. The two numbers are 9 and 16.

Below is the implementation of above idea :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// An Efficient Method to count squares between a and b
#include <bits/stdc++.h>
using namespace std;
  
// An efficient solution to count square between a
// and b
int countSquares(int a, int b)
{
    return (floor(sqrt(b)) - ceil(sqrt(a)) + 1);
}
  
// Driver code
int main()
{
    int a = 9, b = 25;
    cout << "Count of squares is "
         << countSquares(a, b);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// An Efficient method to count squares between
// a and b
class CountSquares {
    double countSquares(int a, int b)
    {
        return (Math.floor(Math.sqrt(b)) - Math.ceil(Math.sqrt(a)) + 1);
    }
}
  
// Driver Code
public class PerfectSquares {
    public static void main(String[] args)
    {
        int a = 9, b = 25;
        CountSquares obj = new CountSquares();
        System.out.print("Count of squares is " + (int)obj.countSquares(a, b));
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# An Efficient Method to count squares between a
# and b
import math
def CountSquares(a, b):
    return (math.floor(math.sqrt(b)) - math.ceil(math.sqrt(a)) + 1)
  
# Driver Code
a = 9
b = 25
print "Count of squares is:", int(CountSquares(a, b))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for efficient method
// to count squares between a & b
using System;
  
class GFG {
  
    // Function to count squares
    static double countSquares(int a, int b)
    {
        return (Math.Floor(Math.Sqrt(b)) - Math.Ceiling(Math.Sqrt(a)) + 1);
    }
  
    // Driver Code
    public static void Main()
    {
        int a = 9, b = 25;
        Console.Write("Count of squares is " + (int)countSquares(a, b));
    }
}
  
// This code is contributed by Sam007.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// An Efficient PHP code to count
// squares between a and b
  
// Method to count square
// between a and b
function countSquares($a, $b)
{
    return (floor(sqrt($b)) - 
            ceil(sqrt($a)) + 1);
}
  
// Driver code
{
    $a = 9;
    $b = 25;
    echo "Count of squares is "
           countSquares($a, $b);
    return 0;
}
// This code is contributed by nitin mittal.
?>

chevron_right



Output :

Count of squares is 3

Time complexity of this solution is O(Log b). A typical implementation of square root for a number n takes time equal to O(Log n) [See this for a sample implementation of square root]

This article is contributed by Rahul Aggarwal. If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



My Personal Notes arrow_drop_up

Improved By : Sam007, jit_t, nitin mittal