Find Nth term of the series 1, 5, 32, 288 …

Given a number n, the task is to find the n-th term in series 1, 5, 32, 288 …

Examples:

Input: N = 3
Output: 32
Explanation:
3rd term = 3^3 + 2^2 + 1^1
         = 32

Input: N = 4
Output: 288
Explanation:
4th term = 4^4 + 3^3 + 2^2 + 1^1
         = 288

Approach:



Nth term = n^n + (n-1)^(n-1) + (n-2)^(n-2) + ……..1^1.

Implementation of the above approach is given below:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP code to generate  'Nth' terms
// of this sequence
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to generate a fixed \number
int nthTerm(int N)
{
    int nth = 0, i;
  
    // Finding nth term
    for (i = N; i > 0; i--) {
  
        nth += pow(i, i);
    }
    return nth;
}
  
// Driver Method
int main()
{
    int N = 3;
    cout << nthTerm(N) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to generate 'Nth' terms
// of this sequence
import java.lang.Math;
class GFG {
  
    // Function to generate a fixed \number
    public static int nthTerm(int N)
    {
        int nth = 0, i;
  
        // Finding nth term
        for (i = N; i > 0; i--) {
  
            nth += Math.pow(i, i);
        }
        return nth;
    }
  
    // Driver Method
    public static void main(String[] args)
    {
        int N = 3;
        System.out.println(nthTerm(N));
    }
}
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to generate 'Nth' 
# terms of this sequence
  
# Function to generate a 
# fixed number
def nthTerm(N):
    nth = 0
  
    # Finding nth term
    for i in range(N, 0, -1):
        nth += pow(i, i)
    return nth
  
# Driver code
N = 3
print(nthTerm(N))
  
# This code is contributed
# by Shrikant13

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to generate 'Nth' terms
// of this sequence
using System;
  
class GFG 
{
  
    // Function to generate a fixed \number
    public static int nthTerm(int N)
    {
        int nth = 0, i;
  
        // Finding nth term
        for (i = N; i > 0; i--) 
        {
            nth +=(int)Math.Pow(i, i);
        }
        return nth;
    }
  
    // Driver Method
    public static void Main()
    {
        int N = 3;
        Console.WriteLine(nthTerm(N));
    }
}
  
// This code is contributed by Code_Mech.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code to generate 'Nth' terms
// of this sequence
  
// Function to generate a fixed \number
function nthTerm($N)
{
    $nth = 0; $i;
  
    // Finding nth term
    for ($i = $N; $i > 0; $i--) 
    {
  
        $nth += pow($i, $i);
    }
    return $nth;
}
  
// Driver Code
$N = 3;
echo(nthTerm($N));
  
// This code is contributed by Code_Mech.
?>

chevron_right


Output:

32

Time Complexity: O(N)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.