# Find next greater element with no consecutive 1 in it’s binary representation

Given **Q** queries where each query consists of an integer **N** and the task is to find the smallest integer greater than **N** such that there are no consecutive **1s** in its binary representation.

**Examples:**

Input:Q[] = {4, 6}

Output:

5

8

Input:Q[] = {50, 23, 456}

Output:

64

32

512

**Approach:** Store all the numbers in a list whose binary representation does not contain consecutive 1s upto a fixed limit. Now for every given **N**, find the next greater element in the list generated previously using binary search.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `const` `int` `MAX = 100000; ` ` ` `// To store the pre-computed integers ` `vector<` `int` `> v; ` ` ` `// Function that returns true if the ` `// binary representation of x contains ` `// consecutive 1s ` `int` `consecutiveOnes(` `int` `x) ` `{ ` ` ` ` ` `// To store the previous bit ` ` ` `int` `p = 0; ` ` ` `while` `(x > 0) { ` ` ` ` ` `// Check whether the previous bit ` ` ` `// and the current bit are both 1 ` ` ` `if` `(x % 2 == 1 and p == 1) ` ` ` `return` `true` `; ` ` ` ` ` `// Update previous bit ` ` ` `p = x % 2; ` ` ` ` ` `// Go to the next bit ` ` ` `x /= 2; ` ` ` `} ` ` ` `return` `false` `; ` `} ` ` ` `// Function to pre-compute the ` `// valid numbers from 0 to MAX ` `void` `preCompute() ` `{ ` ` ` `// Store all the numbers which do ` ` ` `// not have consecutive 1s ` ` ` `for` `(` `int` `i = 0; i <= MAX; i++) { ` ` ` `if` `(!consecutiveOnes(i)) ` ` ` `v.push_back(i); ` ` ` `} ` `} ` ` ` `// Function to return the minimum ` `// number greater than n which does ` `// not contain consecutive 1s ` `int` `nextValid(` `int` `n) ` `{ ` ` ` `// Search for the next greater element ` ` ` `// with no consecutive 1s ` ` ` `int` `it = upper_bound(v.begin(), ` ` ` `v.end(), n) ` ` ` `- v.begin(); ` ` ` `int` `val = v[it]; ` ` ` `return` `val; ` `} ` ` ` `// Function to perform the queries ` `void` `performQueries(` `int` `queries[], ` `int` `q) ` `{ ` ` ` `for` `(` `int` `i = 0; i < q; i++) ` ` ` `cout << nextValid(queries[i]) << ` `"\n"` `; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `queries[] = { 4, 6 }; ` ` ` `int` `q = ` `sizeof` `(queries) / ` `sizeof` `(` `int` `); ` ` ` ` ` `// Pre-compute the numbers ` ` ` `preCompute(); ` ` ` ` ` `// Perform the queries ` ` ` `performQueries(queries, q); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 implementation of the approach ` `from` `bisect ` `import` `bisect_right as upper_bound ` ` ` `MAX` `=` `100000` ` ` `# To store the pre-computed integers ` `v ` `=` `[] ` ` ` `# Function that returns true if the ` `# binary representation of x contains ` `# consecutive 1s ` `def` `consecutiveOnes(x): ` ` ` ` ` `# To store the previous bit ` ` ` `p ` `=` `0` ` ` `while` `(x > ` `0` `): ` ` ` ` ` `# Check whether the previous bit ` ` ` `# and the current bit are both 1 ` ` ` `if` `(x ` `%` `2` `=` `=` `1` `and` `p ` `=` `=` `1` `): ` ` ` `return` `True` ` ` ` ` `# Update previous bit ` ` ` `p ` `=` `x ` `%` `2` ` ` ` ` `# Go to the next bit ` ` ` `x ` `/` `/` `=` `2` ` ` ` ` `return` `False` ` ` `# Function to pre-compute the ` `# valid numbers from 0 to MAX ` `def` `preCompute(): ` ` ` ` ` `# Store all the numbers which do ` ` ` `# not have consecutive 1s ` ` ` `for` `i ` `in` `range` `(` `MAX` `+` `1` `): ` ` ` `if` `(consecutiveOnes(i) ` `=` `=` `0` `): ` ` ` `v.append(i) ` ` ` `# Function to return the minimum ` `# number greater than n which does ` `# not contain consecutive 1s ` `def` `nextValid(n): ` ` ` ` ` `# Search for the next greater element ` ` ` `# with no consecutive 1s ` ` ` `it ` `=` `upper_bound(v, n) ` ` ` `val ` `=` `v[it] ` ` ` `return` `val ` ` ` `# Function to perform the queries ` `def` `performQueries(queries, q): ` ` ` `for` `i ` `in` `range` `(q): ` ` ` `print` `(nextValid(queries[i])) ` ` ` `# Driver code ` `queries ` `=` `[` `4` `, ` `6` `] ` `q ` `=` `len` `(queries) ` ` ` `# Pre-compute the numbers ` `preCompute() ` ` ` `# Perform the queries ` `performQueries(queries, q) ` ` ` `# This code is contributed by Mohit Kumar ` |

*chevron_right*

*filter_none*

**Output:**

5 8

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

## Recommended Posts:

- 1 to n bit numbers with no consecutive 1s in binary representation.
- Next greater number than N with exactly one bit different in binary representation of N
- Length of the Longest Consecutive 1s in Binary Representation
- Maximum number of consecutive 1's in binary representation of all the array elements
- Find the occurrence of the given binary pattern in the binary representation of the array elements
- First element greater than or equal to X in prefix sum of N numbers using Binary Lifting
- Find longest sequence of 1's in binary representation with one flip
- Find the number obtained after concatenation of binary representation of M and N
- Find the element before which all the elements are smaller than it, and after which all are greater
- Find missing element in a sorted array of consecutive numbers
- Find element in a sorted array whose frequency is greater than or equal to n/2.
- Replace two consecutive equal values with one greater
- Count of distinct possible pairs such that the element from A is greater than the element from B
- Longest Subarray with first element greater than or equal to Last element
- Binary representation of next number
- Maximum 0's between two immediate 1's in binary representation
- Maximum distance between two 1's in Binary representation of N
- Largest number with binary representation is m 1's and m-1 0's
- Binary representation of previous number
- Count numbers have all 1s together in binary representation

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.