# Find Maximum Sum Strictly Increasing Subarray

• Difficulty Level : Easy
• Last Updated : 06 Jul, 2022

Given an array of positive integers. Find the maximum sum of strictly increasing subarrays. Note that this problem is different from maximum subarray sum and maximum sum increasing subsequence problems.

Examples:

Input  : arr[] = {1, 2, 3, 2, 5, 1, 7}
Output : 8
Explanation :  Some Strictly increasing subarrays are
{1, 2, 3} sum = 6,
{2, 5} sum = 7,
{1, 7} sum 8
Maximum Sum = 8

Input : arr[] = {1, 2, 2, 4}
Output: 6
Explanation : Increasing subarray with maximum sum is 6.

A Simple Solution is to generate all possible subarrays, and for every subarray check if subarray is strictly increasing or not. If subarray is strictly increasing, then we calculate sum & update max_sum. Time complexity O(n2).

An efficient solution of this problem take O(n) time. The idea is keep track of maximum sum and current sum. For every element arr[i], if it is greater than arr[i-1], then we add it to current sum. Else arr[i] is starting point of another potential candidate for maximum sum increasing subarray, so we update current sum as array. But before updating current sum, we update maximum sum if required.

```Let input array be 'arr[]' and size of array be 'n'

Initialize :
max_sum = arr[0]
// because if array size is 1 than it
// would return that element.
// used to store the maximum sum
current_sum = arr[0] // used to compute current sum

// Traverse array starting from second element
i goes from 1 to n-1

// Check if it is strictly increasing then we
// update current_sum.
current_sum = current_sum + arr[i]
max_sum = max(max_sum, current_sum)
// Also needed for subarray having last element.
// else strictly increasing subarray breaks and
// arr[i] is starting point of next potential
// subarray
max_sum = max(max_sum, current_sum)
current_sum = arr[i]

return max(max_sum, current_sum)    ```

Below is the implementation of the above idea.

## C++

 `// C/C++ program to find the maximum sum of strictly``// increasing subarrays``#include ``using` `namespace` `std;` `// Returns maximum sum of strictly increasing``// subarrays``int` `maxsum_SIS(``int` `arr[], ``int` `n)``{``    ``// Initialize max_sum be 0``    ``int` `max_sum = arr[0];` `    ``// Initialize current sum be arr[0]``    ``int` `current_sum = arr[0];` `    ``// Traverse array elements after first element.``    ``for` `(``int` `i = 1; i < n; i++)``    ``{``        ``// update current_sum for``        ``// strictly increasing subarray``        ``if` `(arr[i - 1] < arr[i])``        ``{``            ``current_sum = current_sum + arr[i];``            ``max_sum = max(max_sum, current_sum);``        ``}` `        ``else` `// strictly increasing subarray break``        ``{``            ``// update max_sum and current_sum ;``            ``max_sum = max(max_sum, current_sum);``            ``current_sum = arr[i];``        ``}``    ``}` `    ``return` `max(max_sum, current_sum);``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 1, 2, 2, 4 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);` `    ``cout << ``"Maximum sum : "` `<< maxsum_SIS(arr, n);``    ``return` `0;``}`

## Java

 `// Java program to find the``// maximum sum of strictly increasing subarrays` `public` `class` `GFG {` `    ``// Returns maximum sum``    ``// of strictly increasing subarrays``    ``static` `int` `maxsum_SIS(``int` `arr[], ``int` `n)``    ``{``        ``// Initialize max_sum be 0``        ``int` `max_sum = arr[``0``];` `        ``// Initialize current sum be arr[0]``        ``int` `current_sum = arr[``0``];` `        ``// Traverse array elements after first element.``        ``for` `(``int` `i = ``1``; i < n; i++)``        ``{``            ``// update current_sum``            ``// for strictly increasing subarray``            ``if` `(arr[i - ``1``] < arr[i])``            ``{``                ``current_sum = current_sum + arr[i];``                ``max_sum = Math.max(max_sum, current_sum);``            ``}``            ``else` `// strictly increasing subarray break``            ``{``                ``// update max_sum and current_sum ;``                ``max_sum = Math.max(max_sum, current_sum);``                ``current_sum = arr[i];``            ``}``        ``}` `        ``return` `Math.max(max_sum, current_sum);``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr[] = { ``1``, ``2``, ``2``, ``4` `};``        ``int` `n = arr.length;``        ``System.out.println(``"Maximum sum : "``                           ``+ maxsum_SIS(arr, n));``    ``}``}` `// This code is contributed by 29AjayKumar`

## Python3

 `# Python3 program to find the maximum sum of strictly``# increasing subarrays` `# Returns maximum sum of strictly increasing``# subarrays`  `def` `maxsum_SIS(arr, n):``    ``# Initialize max_sum be 0``    ``max_sum ``=` `arr[``0``]` `    ``# Initialize current sum be arr[0]``    ``current_sum ``=` `arr[``0``]` `    ``# Traverse array elements after first element.``    ``for` `i ``in` `range``(``1``, n):``        ``# update current_sum for strictly increasing subarray``        ``if` `(arr[i``-``1``] < arr[i]):``            ``current_sum ``=` `current_sum ``+` `arr[i]``            ``max_sum ``=` `max``(max_sum, current_sum)` `        ``else``:``            ``# strictly increasing subarray break``            ``# update max_sum and current_sum``            ``max_sum ``=` `max``(max_sum, current_sum)``            ``current_sum ``=` `arr[i]` `    ``return` `max``(max_sum, current_sum)` `# Driver code` `def` `main():``    ``arr ``=` `[``1``, ``2``, ``2``, ``4``]``    ``n ``=` `len``(arr)` `    ``print``(``"Maximum sum : "``, maxsum_SIS(arr, n)),`  `if` `__name__ ``=``=` `'__main__'``:``    ``main()` `# This code is contributed by 29AjayKumar`

## C#

 `// C# program to find the maximum sum of strictly``// increasing subarrays``using` `System;``public` `class` `GFG {` `    ``// Returns maximum sum of strictly increasing``    ``// subarrays``    ``static` `int` `maxsum_SIS(``int``[] arr, ``int` `n)``    ``{``        ``// Initialize max_sum be 0``        ``int` `max_sum = arr[0];` `        ``// Initialize current sum be arr[0]``        ``int` `current_sum = arr[0];` `        ``// Traverse array elements after first element.``        ``for` `(``int` `i = 1; i < n; i++) {``            ``// update current_sum for strictly increasing``            ``// subarray``            ``if` `(arr[i - 1] < arr[i]) {``                ``current_sum = current_sum + arr[i];``                ``max_sum = Math.Max(max_sum, current_sum);``            ``}``            ``else` `// strictly increasing subarray break``            ``{``                ``// update max_sum and current_sum ;``                ``max_sum = Math.Max(max_sum, current_sum);``                ``current_sum = arr[i];``            ``}``        ``}` `        ``return` `Math.Max(max_sum, current_sum);``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int``[] arr = { 1, 2, 2, 4 };``        ``int` `n = arr.Length;``        ``Console.WriteLine(``"Maximum sum : "``                          ``+ maxsum_SIS(arr, n));``    ``}``}` `// This code is contributed by 29AjayKumar`

## PHP

 ``

## Javascript

 ``

Output

`Maximum sum : 6`

Time complexity : O(n)
Auxiliary Space : O(1)

This article is contributed by Nishant_Singh(Pintu) and Edited by Samraj Singh Solanki (kunwar_samraj_singh) . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

My Personal Notes arrow_drop_up