Find Maximum Sum Strictly Increasing Subarray

Given an array of positive integers. Find the maximum sum of strictly increasing subarrays. Note that this problem is different from maximum subarray sum and maximum sum increasing subsequence problems.

Examples:

Input  : arr[] = {1, 2, 3, 2, 5, 1, 7}
Output : 8
Explanation :  Some Strictly increasing subarrays are 
               {1, 2, 3} sum = 6, 
               {2, 5} sum = 7, 
               {1, 7} sum 8 
               Maximum Sum = 8 

Input : arr[] = {1, 2, 2, 4}
Output: 6
Explanation : Increasing subarray with maximum sum
              is 6.

A Simple Solution is to generate all possible subarrays, and for every subarray check if subarray is strictly increasing or not. If subarray is strictly increasing, then we calculate sum & update max_sum. Time complexity O(n2).

An efficient solution of this problem take O(n) time. The idea is keep track of maximum sum and current sum. For every element arr[i], if it is greater than arr[i-1], then we add it to current sum. Else arr[i] is starting point of another potential candidate for maximum sum increasing subarray, so we update current sum as array. But before updating current sum, we update maximum sum if required.

Let input array be 'arr[]' and size of array be 'n'

Initialize : 
max_sum = 0 // used to store the maximum sum 
current_sum = arr[0] // used to compute current sum 

// Traverse array starting from second element
i goes from 1 to n-1

    // Check if it is strictly increasing then we 
    // update current_sum.
    current_sum = current_sum + arr[i]

    // else strictly increasing subarray breaks and 
    // arr[i] is starting point of next potential
    // subarray
    max_sum = max(max_sum, current_sum)
    current_sum = arr[i]

return max(max_sum, current_sum)    

Below is implementation of above idea.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C/C++ program to find the maximum sum of strictly
// increasing subarrays
#include<iostream>
using namespace std;
  
// Returns maximum sum of strictly increasing
// subarrays
int maxsum_SIS(int arr[] , int n)
{
    // Initialize max_sum be 0
    int max_sum = 0;
  
    // Initialize current sum be arr[0]
    int current_sum = arr[0] ;
  
    // Traverse array elements after first element.
    for (int i=1; i<n ; i++ )
    {
        // update current_sum for strictly increasing subarray
        if (arr[i-1] < arr[i])
            current_sum = current_sum + arr[i];
  
        else // strictly increasing subarray break
        {
            // update max_sum and current_sum ;
            max_sum = max(max_sum, current_sum);
            current_sum = arr[i];
        }
    }
  
    return max(max_sum, current_sum);
}
  
// Driver program
int main()
{
    int arr[] = {1, 2, 2, 4};
    int n = sizeof(arr)/sizeof(arr[0]);
  
    cout << "Maximum sum : " << maxsum_SIS(arr , n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the maximum sum of strictly
// increasing subarrays
  
public class GFG {
  
// Returns maximum sum of strictly increasing
// subarrays
    static int maxsum_SIS(int arr[], int n) {
        // Initialize max_sum be 0
        int max_sum = 0;
  
        // Initialize current sum be arr[0]
        int current_sum = arr[0];
  
        // Traverse array elements after first element.
        for (int i = 1; i < n; i++) {
            // update current_sum for strictly increasing subarray
            if (arr[i - 1] < arr[i]) {
                current_sum = current_sum + arr[i];
            } else // strictly increasing subarray break
            {
                // update max_sum and current_sum ;
                max_sum = Math.max(max_sum, current_sum);
                current_sum = arr[i];
            }
        }
  
        return Math.max(max_sum, current_sum);
    }
  
// driver program
    public static void main(String[] args) {
        int arr[] = {1, 2, 2, 4};
        int n = arr.length;
        System.out.println("Maximum sum : " + maxsum_SIS(arr, n));
    }
}
  
// This code is contributed by 29AjayKumar 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the maximum sum of strictly
# increasing subarrays
  
# Returns maximum sum of strictly increasing
# subarrays
def maxsum_SIS(arr, n):
    # Initialize max_sum be 0
    max_sum = 0
   
    # Initialize current sum be arr[0]
    current_sum = arr[0
   
    # Traverse array elements after first element.
    for i in range(1,n):
        # update current_sum for strictly increasing subarray
        if (arr[i-1] < arr[i]):
            current_sum = current_sum + arr[i]
   
   
        else:
            # strictly increasing subarray break
            # update max_sum and current_sum 
            max_sum = max(max_sum, current_sum)
            current_sum = arr[i]
   
    return max(max_sum, current_sum)
   
# driver program
def main():
    arr = [1, 2, 2, 4]
    n = len(arr)
   
    print("Maximum sum : " , maxsum_SIS(arr , n)),
  
if __name__ == '__main__':
    main()
      
# This code is contributed by 29AjayKumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

//C# program to find the maximum sum of strictly 
// increasing subarrays 
using System; 
public class GFG{
  
// Returns maximum sum of strictly increasing 
// subarrays 
    static int maxsum_SIS(int []arr, int n) { 
        // Initialize max_sum be 0 
        int max_sum = 0; 
  
        // Initialize current sum be arr[0] 
        int current_sum = arr[0]; 
  
        // Traverse array elements after first element. 
        for (int i = 1; i < n; i++) { 
            // update current_sum for strictly increasing subarray 
            if (arr[i - 1] < arr[i]) { 
                current_sum = current_sum + arr[i]; 
            } else // strictly increasing subarray break 
            
                // update max_sum and current_sum ; 
                max_sum = Math.Max(max_sum, current_sum); 
                current_sum = arr[i]; 
            
        
  
        return Math.Max(max_sum, current_sum); 
    
  
// driver program 
    public static void Main() { 
        int []arr = {1, 2, 2, 4}; 
        int n = arr.Length; 
        Console.WriteLine("Maximum sum : " + maxsum_SIS(arr, n)); 
    
  
  
// This code is contributed by 29AjayKumar

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the maximum sum of 
// strictly increasing subarrays
  
// Returns maximum sum of strictly 
// increasing subarrays
function maxsum_SIS($arr , $n)
{
    // Initialize max_sum be 0
    $max_sum = 0;
  
    // Initialize current sum be arr[0]
    $current_sum = $arr[0];
  
    // Traverse array elements after 
    // first element.
    for ($i = 1; $i < $n ; $i++)
    {
        // update current_sum for strictly
        // increasing subarray
        if ($arr[$i - 1] < $arr[$i])
            $current_sum = $current_sum + $arr[$i];
  
        else // strictly increasing 
             // subarray break
        {
            // update max_sum and current_sum ;
            $max_sum = max($max_sum, $current_sum);
            $current_sum = $arr[$i];
        }
    }
  
    return max($max_sum, $current_sum);
}
  
// Driver Code
$arr = array(1, 2, 2, 4);
$n = sizeof($arr);
  
echo "Maximum sum : "
      maxsum_SIS($arr , $n);
  
// This code is contributed by Sachin 
?>

chevron_right



Output:

Maximum sum : 6

Time complexity : O(n)
Auxiliary Space : O(1)

This article is contributed by Nishant_Singh(Pintu). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : 29AjayKumar, Sach_Code



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.