We are given a string having parenthesis like below
“( ((X)) (((Y))) )”
We need to find the maximum depth of balanced parenthesis, like 4 in the above example. Since ‘Y’ is surrounded by 4 balanced parentheses.
If parenthesis is unbalanced then return -1.
Examples :
Input : S = "( a(b) (c) (d(e(f)g)h) I (j(k)l)m)"; Output : 4 Input : S = "( p((q)) ((s)t) )"; Output : 3 Input : S = ""; Output : 0 Input : S = "b) (c) ()"; Output : -1 Input : S = "(b) ((c) ()" Output : -1
Method 1 (Uses Stack)
A simple solution is to use a stack that keeps track of current open brackets.
1) Create a stack. 2) Traverse the string, do following for every character a) If current character is ‘(’ push it to the stack . b) If character is ‘)’, pop an element. c) Maintain maximum count during the traversal.
Time Complexity : O(n)
Auxiliary Space : O(n)
Method 2 ( O(1) auxiliary space )
This can also be done without using stack.
1) Take two variables max and current_max, initialize both of them as 0. 2) Traverse the string, do following for every character a) If current character is ‘(’, increment current_max and update max value if required. b) If character is ‘)’. Check if current_max is positive or not (this condition ensure that parenthesis are balanced). If positive that means we previously had a ‘(’ character so decrement current_max without worry. If not positive then the parenthesis are not balanced. Thus return -1. 3) If current_max is not 0, then return -1 to ensure that the parenthesis are balanced. Else return max
Below is the implementation of the above algorithm.
C/C++
// A C++ program to find the maximum depth of nested // parenthesis in a given expression #include <iostream> using namespace std; // function takes a string and returns the // maximum depth nested parenthesis int maxDepth(string S) { int current_max = 0; // current count int max = 0; // overall maximum count int n = S.length(); // Traverse the input string for ( int i = 0; i < n; i++) { if (S[i] == '(' ) { current_max++; // update max if required if (current_max > max) max = current_max; } else if (S[i] == ')' ) { if (current_max > 0) current_max--; else return -1; } } // finally check for unbalanced string if (current_max != 0) return -1; return max; } // Driver program int main() { string s = "( ((X)) (((Y))) )" ; cout << maxDepth(s); return 0; } |
Java
//Java program to find the maximum depth of nested // parenthesis in a given expression class GFG { // function takes a string and returns the // maximum depth nested parenthesis static int maxDepth(String S) { int current_max = 0 ; // current count int max = 0 ; // overall maximum count int n = S.length(); // Traverse the input string for ( int i = 0 ; i < n; i++) { if (S.charAt(i) == '(' ) { current_max++; // update max if required if (current_max > max) { max = current_max; } } else if (S.charAt(i) == ')' ) { if (current_max > 0 ) { current_max--; } else { return - 1 ; } } } // finally check for unbalanced string if (current_max != 0 ) { return - 1 ; } return max; } // Driver program public static void main(String[] args) { String s = "( ((X)) (((Y))) )" ; System.out.println(maxDepth(s)); } } |
Python
# A Python program to find the maximum depth of nested # parenthesis in a given expression # function takes a string and returns the # maximum depth nested parenthesis def maxDepth(S): current_max = 0 max = 0 n = len (S) # Traverse the input string for i in range (n): if S[i] = = '(' : current_max + = 1 if current_max > max : max = current_max elif S[i] = = ')' : if current_max > 0 : current_max - = 1 else : return - 1 # finally check for unbalanced string if current_max ! = 0 : return - 1 return max # Driver program s = "( ((X)) (((Y))) )" print (maxDepth(s)) # This code is contributed by BHAVYA JAIN |
C#
// C# program to find the // maximum depth of nested // parenthesis in a given expression using System; class GFG { // function takes a string // and returns the maximum // depth nested parenthesis static int maxDepth( string S) { // current count int current_max = 0; // overall maximum count int max = 0; int n = S.Length; // Traverse the input string for ( int i = 0; i < n; i++) { if (S[i] == '(' ) { current_max++; // update max if required if (current_max > max) { max = current_max; } } else if (S[i] == ')' ) { if (current_max > 0) { current_max--; } else { return -1; } } } // finally check for unbalanced string if (current_max != 0) { return -1; } return max; } // Driver program public static void Main() { string s = "(((X)) (((Y))))" ; Console.Write(maxDepth(s)); } } // This code is contributed by Chitranayal |
PHP
<?php // A PHP program to find the // maximum depth of nested // parenthesis in a given // expression // function takes a string // and returns the maximum // depth nested parenthesis function maxDepth( $S ) { // current count $current_max = 0; // overall maximum count $max = 0; $n = strlen ( $S ); // Traverse the input string for ( $i = 0; $i < $n ; $i ++) { if ( $S [ $i ] == '(' ) { $current_max ++; // update max if required if ( $current_max > $max ) $max = $current_max ; } else if ( $S [ $i ] == ')' ) { if ( $current_max >0) $current_max --; else return -1; } } // finally check for // unbalanced string if ( $current_max != 0) return -1; return $max ; } // Driver Code $s = "( ((X)) (((Y))) )" ; echo maxDepth( $s ); // This code is contributed by mits ?> |
Output :
4
Time Complexity: O(n)
Auxiliary Space: O(1)
This article is contributed by Gaurav Sharma. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.