Find if there is any subset of size K with 0 sum in an array of -1 and +1

Given an integer K and an array arr containing only 1 and -1, the task is to find if there is any subset of size K sum of whose elements is 0.

Examples:

Input: arr[] = {1, -1, 1}, K = 2
Output: Yes
{1, -1} is a valid subset



Input: arr[] = {1, 1, -1, -1, 1}, K = 5
Output: No

Approach:

  • In order for the sum to be 0, there has to be equal number of 1 and -1 in the subset.
  • If K is odd then no subset will satisfy the given condition.
  • Else if K is even then we need to choose exactly (K / 2) 1’s and (K / 2) -1’s in order to form the subset so that the sum of all of it’s elements is 0
  • So, if K is even and number of 1’s ≥ K / 2 and number of -1’s ≥ K / 2 then print Yes else print No.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find if there is a subset of size
// k with sum 0 in an array of -1 and +1
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the number of 1's in the array
int countOnes(int n, int a[])
{
    int i, count = 0;
    for (i = 0; i < n; i++)
        if (a[i] == 1)
            count++;
    return count;
}
  
bool isSubset(int arr[], int n, int k)
{
    int countPos1 = countOnes(n, arr);
    int countNeg1 = n - countPos1;
  
    // If K is even and there are
    // at least K/2 1's and -1's
    return (k % 2 == 0 && countPos1 >= k / 2 && 
                          countNeg1 >= k / 2);
}
  
// Driver Program to test above function
int main()
{
    int a[] = { 1, 1, -1, -1, 1 };
    int n = sizeof(a) / sizeof(a[0]);
    int k = 5;
    if (isSubset(a, n, k))
      cout << "Yes";
    else
      cout << "No";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find if there is a subset of size
// k with sum 0 in an array of -1 and +1
  
import java.io.*;
  
class GFG {
     
  
// Function to return the number of 1's in the array
static int countOnes(int n, int a[])
{
    int i, count = 0;
    for (i = 0; i < n; i++)
        if (a[i] == 1)
            count++;
    return count;
}
  
static boolean isSubset(int arr[], int n, int k)
{
    int countPos1 = countOnes(n, arr);
    int countNeg1 = n - countPos1;
  
    // If K is even and there are
    // at least K/2 1's and -1's
    return (k % 2 == 0 && countPos1 >= k / 2 && 
                        countNeg1 >= k / 2);
}
  
// Driver Program to test above function
public static void main (String[] args) {
        int []a = { 1, 1, -1, -1, 1 };
    int n = a.length;
    int k = 5;
    if (isSubset(a, n, k))
     System.out.println( "Yes");
    else
    System.out.println( "No");
    }
}
// This code is contributed by shs

chevron_right


Python3

# Python3 program to find if there is
# a subset of size k with sum 0 in an
# array of -1 and +1



# Function to return the number of
# 1’s in the array
def countOnes(n, a):

count = 0
for i in range(0, n):
if a[i] == 1:
count += 1
return count

def isSubset(arr, n, k):

countPos1 = countOnes(n, arr)
countNeg1 = n – countPos1

# If K is even and there are
# at least K/2 1’s and -1’s
return (k % 2 == 0 and countPos1 >= k // 2 and
countNeg1 >= k // 2)

# Driver Code
if __name__ == “__main__”:

a = [1, 1, -1, -1, 1]
n = len(a)
k = 5

if isSubset(a, n, k) == True:
print(“Yes”)
else:
print(“No”)

# This code is contributed
# by Rituraj Jain

C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find if there is 
// a subset of size k with sum 0
// in an array of -1 and +1
using System;
  
class GFG
{
  
// Function to return the number
// of 1's in the array
static int countOnes(int n, int []a)
{
    int i, count = 0;
    for (i = 0; i < n; i++)
        if (a[i] == 1)
            count++;
    return count;
}
  
static bool isSubset(int []arr,
                     int n, int k)
{
    int countPos1 = countOnes(n, arr);
    int countNeg1 = n - countPos1;
  
    // If K is even and there are
    // at least K/2 1's and -1's
    return (k % 2 == 0 && countPos1 >= k / 2 && 
                          countNeg1 >= k / 2);
}
  
// Driver Code
public static void Main ()
{
    int []a = { 1, 1, -1, -1, 1 };
    int n = a.Length;
    int k = 5;
    if (isSubset(a, n, k))
        Console.WriteLine( "Yes");
    else
        Console.WriteLine( "No");
}
}
  
// This code is contributed by shs

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find if there 
// is a subset of size k with 
// sum 0 in an array of -1 and +1
  
// Function to return the number
// of 1's in the array
function countOnes($n, $a)
{
    $count = 0;
    for ($i = 0; $i < $n; $i++)
        if ($a[$i] == 1)
            $count++;
    return $count;
}
  
function isSubset($arr, $n, $k)
{
    $countPos1 = countOnes($n, $arr);
    $countNeg1 = $n - $countPos1;
  
    // If K is even and there are
    // at least K/2 1's and -1's
    return ($k % 2 == 0 && $countPos1 >= $k / 2 && 
                           $countNeg1 >= $k / 2);
}
  
// Driver Code
$a = array(1, 1, -1, -1, 1);
$n = sizeof($a);
$k = 5;
  
if (isSubset($a, $n, $k))
    echo "Yes";
else
    echo "No";
  
// This code is contributed
// by Akanksha Rai
?>

chevron_right


Output:

No

Time Complexity: O(n)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.