Skip to content
Related Articles

Related Articles

Improve Article

Find array sum using Bitwise OR after splitting given array in two halves after K circular shifts

  • Difficulty Level : Hard
  • Last Updated : 07 Apr, 2021

Given an array A[] of length N, where N is an even number, the task is to answer Q independent queries where each query consists of a positive integer K representing the number of circular shifts performed on the array and find the sum of elements by performing Bitwise OR operation on the divided array.
Note: Each query begins with the original array.
Examples: 
 

Input: A[] = {12, 23, 4, 21, 22, 76}, Q = 1, K = 2 
Output: 117 
Explanation: 
Since K is 2, modified array A[]={22, 76, 12, 23, 4, 21}. 
Bitwise OR of first half of array = (22 | 76 | 12) = 94 
Bitwise OR of second half of array = (21 | 23 | 4) = 23 
Sum of OR values is 94 + 23 = 117
Input: A[] = {7, 44, 19, 86, 65, 39, 75, 101}, Q = 1, K = 4 
Output: 238 
Since K is 4, modified array A[]={65, 39, 75, 101, 7, 44, 19, 86}. 
Bitwise OR of first half of array = 111 
Bitwise OR of second half of array = 127 
Sum of OR values is 111 + 127 = 238 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Naive Approach: 
To solve the problem mentioned above the simplest approach is to shift each element of the array by K % (N / 2) and then traverse the array to calculate the OR of the two halves for every query. But this method is not efficient and hence can be optimized further.
Efficient Approach: 
To optimize the above mentioned approach we can take the help of Segment Tree data structure. 
 

Observation: 
 

  • We can observe that after exactly N / 2 right circular shifts the two halves of the array become the same as in the original array. This effectively reduces the number of rotations to K % (N / 2).
  • Performing a right circular shift is basically shifting the last element of the array to the front. So for any positive integer X performing X right circular shifts is equal to shifting the last X elements of the array to the front.

Following are the steps to solve the problem : 
 

  • Construct a segment tree for the original array A[] and assign a variable let’s say i = K % (N / 2).
  • Then for each query we use the segment tree of find the bitwise OR; that is Bitwise OR of i elements from the end OR bitwise OR of the first (N / 2) – i – 1 elements.
  • Then calculate the bitwise OR of elements in range [(N / 2) – i, N – i – 1].
  • Add the two results to get the answer for the ith query.

Below is the implementation of the above approach:
 

C++




// C++ Program to find Bitwise OR of two
// equal halves of an array after performing
// K right circular shifts
#include <bits/stdc++.h>
const int MAX = 100005;
using namespace std;
 
// Array for storing
// the segment tree
int seg[4 * MAX];
 
// Function to build the segment tree
void build(int node, int l, int r, int a[])
{
    if (l == r)
        seg[node] = a[l];
 
    else {
        int mid = (l + r) / 2;
 
        build(2 * node, l, mid, a);
        build(2 * node + 1, mid + 1, r, a);
 
        seg[node] = (seg[2 * node]
                     | seg[2 * node + 1]);
    }
}
 
// Function to return the OR
// of elements in the range [l, r]
int query(int node, int l, int r,
          int start, int end, int a[])
{
    // Check for out of bound condition
    if (l > end or r < start)
        return 0;
 
    if (start <= l and r <= end)
        return seg[node];
 
    // Find middle of the range
    int mid = (l + r) / 2;
 
    // Recurse for all the elements in array
    return ((query(2 * node, l, mid,
                   start, end, a))
            | (query(2 * node + 1, mid + 1,
                     r, start, end, a)));
}
 
// Function to find the OR sum
void orsum(int a[], int n, int q, int k[])
{
    // Function to build the segment Tree
    build(1, 0, n - 1, a);
 
    // Loop to handle q queries
    for (int j = 0; j < q; j++) {
        // Effective number of
        // right circular shifts
        int i = k[j] % (n / 2);
 
        // Calculating the OR of
        // the two halves of the
        // array from the segment tree
 
        // OR of second half of the
        // array [n/2-i, n-1-i]
        int sec = query(1, 0, n - 1,
                        n / 2 - i, n - i - 1, a);
 
        // OR of first half of the array
        // [n-i, n-1]OR[0, n/2-1-i]
        int first = (query(1, 0, n - 1, 0,
                           n / 2 - 1 - i, a)
                     | query(1, 0, n - 1,
                             n - i, n - 1, a));
 
        int temp = sec + first;
 
        // Print final answer to the query
        cout << temp << endl;
    }
}
 
// Driver Code
int main()
{
 
    int a[] = { 7, 44, 19, 86, 65, 39, 75, 101 };
    int n = sizeof(a) / sizeof(a[0]);
 
    int q = 2;
 
    int k[q] = { 4, 2 };
 
    orsum(a, n, q, k);
 
    return 0;
}

Java




// Java program to find Bitwise OR of two
// equal halves of an array after performing
// K right circular shifts
import java.util.*;
 
class GFG{
     
static int MAX = 100005;
 
// Array for storing
// the segment tree
static int []seg = new int[4 * MAX];
 
// Function to build the segment tree
static void build(int node, int l,
                  int r, int a[])
{
    if (l == r)
        seg[node] = a[l];
 
    else
    {
        int mid = (l + r) / 2;
 
        build(2 * node, l, mid, a);
        build(2 * node + 1, mid + 1, r, a);
 
        seg[node] = (seg[2 * node] |
                     seg[2 * node + 1]);
    }
}
 
// Function to return the OR
// of elements in the range [l, r]
static int query(int node, int l, int r,
                 int start, int end, int a[])
{
     
    // Check for out of bound condition
    if (l > end || r < start)
        return 0;
 
    if (start <= l && r <= end)
        return seg[node];
 
    // Find middle of the range
    int mid = (l + r) / 2;
 
    // Recurse for all the elements in array
    return ((query(2 * node, l, mid,
                   start, end, a)) |
            (query(2 * node + 1, mid + 1,
                   r, start, end, a)));
}
 
// Function to find the OR sum
static void orsum(int a[], int n,
                  int q, int k[])
{
     
    // Function to build the segment Tree
    build(1, 0, n - 1, a);
 
    // Loop to handle q queries
    for(int j = 0; j < q; j++)
    {
         
        // Effective number of
        // right circular shifts
        int i = k[j] % (n / 2);
 
        // Calculating the OR of
        // the two halves of the
        // array from the segment tree
 
        // OR of second half of the
        // array [n/2-i, n-1-i]
        int sec = query(1, 0, n - 1,
                        n / 2 - i,
                        n - i - 1, a);
 
        // OR of first half of the array
        // [n-i, n-1]OR[0, n/2-1-i]
        int first = (query(1, 0, n - 1, 0,
                           n / 2 - 1 - i, a) |
                     query(1, 0, n - 1,
                           n - i, n - 1, a));
 
        int temp = sec + first;
 
        // Print final answer to the query
        System.out.print(temp + "\n");
    }
}
 
// Driver Code
public static void main(String[] args)
{
 
    int a[] = { 7, 44, 19, 86, 65, 39, 75, 101 };
    int n = a.length;
    int q = 2;
 
    int k[] = { 4, 2 };
 
    orsum(a, n, q, k);
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to find Bitwise OR of two
# equal halves of an array after performing
# K right circular shifts
MAX = 100005
 
# Array for storing
# the segment tree
seg = [0] * (4 * MAX)
 
# Function to build the segment tree
def build(node, l, r, a):
 
    if (l == r):
        seg[node] = a[l]
 
    else:
        mid = (l + r) // 2
 
        build(2 * node, l, mid, a)
        build(2 * node + 1, mid + 1, r, a)
         
        seg[node] = (seg[2 * node] |
                     seg[2 * node + 1])
 
# Function to return the OR
# of elements in the range [l, r]
def query(node, l, r, start, end, a):
     
    # Check for out of bound condition
    if (l > end or r < start):
        return 0
 
    if (start <= l and r <= end):
        return seg[node]
 
    # Find middle of the range
    mid = (l + r) // 2
 
    # Recurse for all the elements in array
    return ((query(2 * node, l, mid,
                       start, end, a)) |
            (query(2 * node + 1, mid + 1,
                       r, start, end, a)))
 
# Function to find the OR sum
def orsum(a, n, q, k):
 
    # Function to build the segment Tree
    build(1, 0, n - 1, a)
 
    # Loop to handle q queries
    for j in range(q):
         
        # Effective number of
        # right circular shifts
        i = k[j] % (n // 2)
 
        # Calculating the OR of
        # the two halves of the
        # array from the segment tree
 
        # OR of second half of the
        # array [n/2-i, n-1-i]
        sec = query(1, 0, n - 1, n // 2 - i,
                          n - i - 1, a)
 
        # OR of first half of the array
        # [n-i, n-1]OR[0, n/2-1-i]
        first = (query(1, 0, n - 1, 0,
                             n // 2 -
                             1 - i, a) |
                 query(1, 0, n - 1,
                             n - i,
                             n - 1, a))
 
        temp = sec + first
 
        # Print final answer to the query
        print(temp)
 
# Driver Code
if __name__ == "__main__":
 
    a = [ 7, 44, 19, 86, 65, 39, 75, 101 ]
    n = len(a)
     
    q = 2
    k = [ 4, 2 ]
     
    orsum(a, n, q, k)
 
# This code is contributed by chitranayal

C#




// C# program to find Bitwise OR of two
// equal halves of an array after performing
// K right circular shifts
using System;
class GFG{
     
static int MAX = 100005;
 
// Array for storing
// the segment tree
static int []seg = new int[4 * MAX];
 
// Function to build the segment tree
static void build(int node, int l,
                  int r, int []a)
{
    if (l == r)
        seg[node] = a[l];
 
    else
    {
        int mid = (l + r) / 2;
 
        build(2 * node, l, mid, a);
        build(2 * node + 1, mid + 1, r, a);
 
        seg[node] = (seg[2 * node] |
                     seg[2 * node + 1]);
    }
}
 
// Function to return the OR
// of elements in the range [l, r]
static int query(int node, int l, int r,
                 int start, int end, int []a)
{
     
    // Check for out of bound condition
    if (l > end || r < start)
        return 0;
 
    if (start <= l && r <= end)
        return seg[node];
 
    // Find middle of the range
    int mid = (l + r) / 2;
 
    // Recurse for all the elements in array
    return ((query(2 * node, l, mid,
                      start, end, a)) |
            (query(2 * node + 1, mid + 1,
                   r, start, end, a)));
}
 
// Function to find the OR sum
static void orsum(int []a, int n,
                  int q, int []k)
{
     
    // Function to build the segment Tree
    build(1, 0, n - 1, a);
 
    // Loop to handle q queries
    for(int j = 0; j < q; j++)
    {
         
        // Effective number of
        // right circular shifts
        int i = k[j] % (n / 2);
 
        // Calculating the OR of
        // the two halves of the
        // array from the segment tree
 
        // OR of second half of the
        // array [n/2-i, n-1-i]
        int sec = query(1, 0, n - 1,
                        n / 2 - i,
                        n - i - 1, a);
 
        // OR of first half of the array
        // [n-i, n-1]OR[0, n/2-1-i]
        int first = (query(1, 0, n - 1, 0,
                         n / 2 - 1 - i, a) |
                    query(1, 0, n - 1,
                          n - i, n - 1, a));
 
        int temp = sec + first;
 
        // Print readonly answer to the query
        Console.Write(temp + "\n");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int []a = { 7, 44, 19, 86, 65, 39, 75, 101 };
    int n = a.Length;
    int q = 2;
 
    int []k = { 4, 2 };
 
    orsum(a, n, q, k);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
// javascript program to find Bitwise OR of two
// equal halves of an array after performing
// K right circular shifts
    const MAX = 100005;
 
    // Array for storing
    // the segment tree
    var seg = Array(4 * MAX).fill(0);
 
    // Function to build the segment tree
    function build(node , l , r , a) {
        if (l == r)
            seg[node] = a[l];
 
        else {
            var mid = parseInt((l + r) / 2);
 
            build(2 * node, l, mid, a);
            build(2 * node + 1, mid + 1, r, a);
 
            seg[node] = (seg[2 * node] | seg[2 * node + 1]);
        }
    }
 
    // Function to return the OR
    // of elements in the range [l, r]
    function query(node , l , r , start , end , a) {
 
        // Check for out of bound condition
        if (l > end || r < start)
            return 0;
 
        if (start <= l && r <= end)
            return seg[node];
 
        // Find middle of the range
        var mid = parseInt((l + r) / 2);
 
        // Recurse for all the elements in array
        return ((query(2 * node, l, mid, start, end, a)) | (query(2 * node + 1, mid + 1, r, start, end, a)));
    }
 
    // Function to find the OR sum
    function orsum(a , n , q , k) {
 
        // Function to build the segment Tree
        build(1, 0, n - 1, a);
 
        // Loop to handle q queries
        for (j = 0; j < q; j++) {
 
            // Effective number of
            // right circular shifts
            var i = k[j] % (n / 2);
 
            // Calculating the OR of
            // the two halves of the
            // array from the segment tree
 
            // OR of second half of the
            // array [n/2-i, n-1-i]
            var sec = query(1, 0, n - 1, n / 2 - i, n - i - 1, a);
 
            // OR of first half of the array
            // [n-i, n-1]OR[0, n/2-1-i]
            var first = (query(1, 0, n - 1, 0, n / 2 - 1 - i, a) | query(1, 0, n - 1, n - i, n - 1, a));
 
            var temp = sec + first;
 
            // Prvar final answer to the query
            document.write(temp + "<br/>");
        }
    }
 
    // Driver Code
        var a = [ 7, 44, 19, 86, 65, 39, 75, 101 ];
        var n = a.length;
        var q = 2;
 
        var k = [ 4, 2 ];
 
        orsum(a, n, q, k);
 
// This code is contributed by Rajput-Ji.
</script>
Output: 
238
230

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :