Skip to content
Related Articles

Related Articles

Improve Article
Find all the possible remainders when N is divided by all positive integers from 1 to N+1
  • Difficulty Level : Hard
  • Last Updated : 02 Jun, 2021

Given a large integer N, the task is to find all the possible remainders when N is divided by all the positive integers from 1 to N + 1.

Examples: 

Input: N = 5 
Output: 0 1 2 5 
5 % 1 = 0 
5 % 2 = 1 
5 % 3 = 2 
5 % 4 = 1 
5 % 5 = 0 
5 % 6 = 5

Input: N = 11 
Output: 0 1 2 3 5 11 
 

Naive approach: Run a loop from 1 to N + 1 and return all the unique remainders found when dividing N by any integer from the range. But this approach is not efficient for larger values of N.



Efficient approach: It can be observed that one part of the answer will always contain numbers between 0 to ceil(sqrt(n)). It can be proven by running the naive algorithm on smaller values of N and checking the remainders obtained or by solving the equation ceil(N / k) = x or x ≤ (N / k) < x + 1 where x is one of the remainders for all integers k when N is divided by k for k from 1 to N + 1
The solution to the above inequality is nothing but integers k from (N / (x + 1), N / x] of length N / x – N / (x + 1) = N / (x2 + x). Therefore, iterate from k = 1 to ceil(sqrt(N)) and store all the unique N % k. What if the above k is greater than ceil(sqrt(N))? They will always correspond to values 0 ≤ x < ceil(sqrt(N)). So, again start storing remainders from N / (ceil(sqrt(N)) – 1 to 0 and return the final answer with all the possible remainders.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
typedef long long int ll;
 
// Function to find all the distinct
// remainders when n is divided by
// all the elements from
// the range [1, n + 1]
void findRemainders(ll n)
{
 
    // Set will be used to store
    // the remainders in order
    // to eliminate duplicates
    set<ll> vc;
 
    // Find the remainders
    for (ll i = 1; i <= ceil(sqrt(n)); i++)
        vc.insert(n / i);
    for (ll i = n / ceil(sqrt(n)) - 1; i >= 0; i--)
        vc.insert(i);
 
    // Print the contents of the set
    for (auto it : vc)
        cout << it << " ";
}
 
// Driver code
int main()
{
    ll n = 5;
 
    findRemainders(n);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to find all the distinct
// remainders when n is divided by
// all the elements from
// the range [1, n + 1]
static void findRemainders(long n)
{
 
    // Set will be used to store
    // the remainders in order
    // to eliminate duplicates
    HashSet<Long> vc = new HashSet<Long>();
 
    // Find the remainders
    for (long i = 1; i <= Math.ceil(Math.sqrt(n)); i++)
        vc.add(n / i);
    for (long i = (long) (n / Math.ceil(Math.sqrt(n)) - 1);
                                                i >= 0; i--)
        vc.add(i);
 
    // Print the contents of the set
    for (long it : vc)
        System.out.print(it+ " ");
}
 
// Driver code
public static void main(String[] args)
{
    long n = 5;
 
    findRemainders(n);
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 implementation of the approach
from math import ceil, floor, sqrt
 
# Function to find all the distinct
# remainders when n is divided by
# all the elements from
# the range [1, n + 1]
def findRemainders(n):
 
    # Set will be used to store
    # the remainders in order
    # to eliminate duplicates
    vc = dict()
 
    # Find the remainders
    for i in range(1, ceil(sqrt(n)) + 1):
        vc[n // i] = 1
    for i in range(n // ceil(sqrt(n)) - 1, -1, -1):
        vc[i] = 1
 
    # Print the contents of the set
    for it in sorted(vc):
        print(it, end = " ")
 
# Driver code
n = 5
 
findRemainders(n)
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to find all the distinct
// remainders when n is divided by
// all the elements from
// the range [1, n + 1]
static void findRemainders(long n)
{
 
    // Set will be used to store
    // the remainders in order
    // to eliminate duplicates
    List<long> vc = new List<long>();
 
    // Find the remainders
 
    for (long i = 1; i <= Math.Ceiling(Math.Sqrt(n)); i++)
        vc.Add(n / i);
    for (long i = (long) (n / Math.Ceiling(Math.Sqrt(n)) - 1);
                                                 i >= 0; i--)
        vc.Add(i);
    vc.Reverse();
     
    // Print the contents of the set
    foreach (long it in vc)
        Console.Write(it + " ");
}
 
// Driver code
public static void Main(String[] args)
{
    long n = 5;
 
    findRemainders(n);
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find all the distinct
// remainders when n is divided by
// all the elements from
// the range [1, n + 1]
function findRemainders(n)
{
     
    // Set will be used to store
    // the remainders in order
    // to eliminate duplicates
    var vc = new Set();
 
    // Find the remainders
    for(var i = 1; i <= Math.ceil(Math.sqrt(n)); i++)
        vc.add(parseInt(n / i));
    for(var i = parseInt(n / Math.ceil(Math.sqrt(n))) - 1;
            i >= 0; i--)
        vc.add(i);
 
    // Print the contents of the set
    [...vc].sort((a, b) => a - b).forEach(it => {
        document.write(it + " ");
    });
}
 
// Driver code
var n = 5;
 
findRemainders(n);
 
// This code is contributed by famously
 
</script>
Output: 
0 1 2 5

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :