# Find all the possible remainders when N is divided by all positive integers from 1 to N+1

Given a large integer N, the task is to find all the possible remainders when N is divided by all the positive integers from 1 to N + 1.

Examples:

Input: N = 5
Output: 0 1 2 5
5 % 1 = 0
5 % 2 = 1
5 % 3 = 2
5 % 4 = 1
5 % 5 = 0
5 % 6 = 5

Input: N = 11
Output: 0 1 2 3 5 11

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Naive approach: Run a loop from 1 to N + 1 and return all the unique remainders found when dividing N by any integer from the range. But this approach is not efficient for larger values of N.

Efficient approach: It can be observed that one part of the answer will always contain numbers between 0 to ceil(sqrt(n)). It can be proven by running the naive algorithm on smaller values of N and checking the remainders obtained or by solving the equation ceil(N / k) = x or x ≤ (N / k) < x + 1 where x is one of the remainders for all integers k when N is divided by k for k from 1 to N + 1.
The solution to the above inequality is nothing but integers k from (N / (x + 1), N / x] of length N / x – N / (x + 1) = N / (x2 + x). Therefore, iterate from k = 1 to ceil(sqrt(N)) and store all the unique N % k. What if the above k is greater than ceil(sqrt(N))? They will always correspond to values 0 ≤ x < ceil(sqrt(N)). So, again start storing remainders from N / (ceil(sqrt(N)) – 1 to 0 and return the final answer with all the possible remainders.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `typedef` `long` `long` `int` `ll; ` ` `  `// Function to find all the distinct ` `// remainders when n is divided by ` `// all the elements from ` `// the range [1, n + 1] ` `void` `findRemainders(ll n) ` `{ ` ` `  `    ``// Set will be used to store ` `    ``// the remainders in order ` `    ``// to eliminate duplicates ` `    ``set vc; ` ` `  `    ``// Find the remainders ` `    ``for` `(ll i = 1; i <= ``ceil``(``sqrt``(n)); i++) ` `        ``vc.insert(n / i); ` `    ``for` `(ll i = n / ``ceil``(``sqrt``(n)) - 1; i >= 0; i--) ` `        ``vc.insert(i); ` ` `  `    ``// Print the contents of the set ` `    ``for` `(``auto` `it : vc) ` `        ``cout << it << ``" "``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``ll n = 5; ` ` `  `    ``findRemainders(n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to find all the distinct ` `// remainders when n is divided by ` `// all the elements from ` `// the range [1, n + 1] ` `static` `void` `findRemainders(``long` `n) ` `{ ` ` `  `    ``// Set will be used to store ` `    ``// the remainders in order ` `    ``// to eliminate duplicates ` `    ``HashSet vc = ``new` `HashSet(); ` ` `  `    ``// Find the remainders ` `    ``for` `(``long` `i = ``1``; i <= Math.ceil(Math.sqrt(n)); i++) ` `        ``vc.add(n / i); ` `    ``for` `(``long` `i = (``long``) (n / Math.ceil(Math.sqrt(n)) - ``1``);  ` `                                                ``i >= ``0``; i--) ` `        ``vc.add(i); ` ` `  `    ``// Print the contents of the set ` `    ``for` `(``long` `it : vc) ` `        ``System.out.print(it+ ``" "``); ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``long` `n = ``5``; ` ` `  `    ``findRemainders(n); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 implementation of the approach ` `from` `math ``import` `ceil, floor, sqrt ` ` `  `# Function to find all the distinct ` `# remainders when n is divided by ` `# all the elements from ` `# the range [1, n + 1] ` `def` `findRemainders(n): ` ` `  `    ``# Set will be used to store ` `    ``# the remainders in order ` `    ``# to eliminate duplicates ` `    ``vc ``=` `dict``() ` ` `  `    ``# Find the remainders ` `    ``for` `i ``in` `range``(``1``, ceil(sqrt(n)) ``+` `1``): ` `        ``vc[n ``/``/` `i] ``=` `1` `    ``for` `i ``in` `range``(n ``/``/` `ceil(sqrt(n)) ``-` `1``, ``-``1``, ``-``1``): ` `        ``vc[i] ``=` `1` ` `  `    ``# Print the contents of the set ` `    ``for` `it ``in` `sorted``(vc): ` `        ``print``(it, end ``=` `" "``) ` ` `  `# Driver code ` `n ``=` `5` ` `  `findRemainders(n) ` ` `  `# This code is contributed by Mohit Kumar `

## C#

 `// C# implementation of the approach ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to find all the distinct ` `// remainders when n is divided by ` `// all the elements from ` `// the range [1, n + 1] ` `static` `void` `findRemainders(``long` `n) ` `{ ` ` `  `    ``// Set will be used to store ` `    ``// the remainders in order ` `    ``// to eliminate duplicates ` `    ``List<``long``> vc = ``new` `List<``long``>(); ` ` `  `    ``// Find the remainders ` ` `  `    ``for` `(``long` `i = 1; i <= Math.Ceiling(Math.Sqrt(n)); i++) ` `        ``vc.Add(n / i); ` `    ``for` `(``long` `i = (``long``) (n / Math.Ceiling(Math.Sqrt(n)) - 1);  ` `                                                 ``i >= 0; i--) ` `        ``vc.Add(i); ` `    ``vc.Reverse(); ` `     `  `    ``// Print the contents of the set ` `    ``foreach` `(``long` `it ``in` `vc) ` `        ``Console.Write(it + ``" "``); ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``long` `n = 5; ` ` `  `    ``findRemainders(n); ` `} ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

Output:

```0 1 2 5
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.