Open In App

Distribution Apples

Last Updated : 12 Jan, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

We were given N apple trees and M friends. The ith tree has a[i] apples and it takes b[i] units of energy to pluck an apple from this tree. Find the maximum number of apples while minimizing the energy required to pluck them such that they distribute apples among themselves equally.

Examples:

Input: N = 4, M = 5, a[] = {5,5,1,1} , b[] = {1,2,5,5}
Output: {10, 15}
Explanation: 5 apples from 1st tree, 5 apples from 2nd tree, and none from 3rd and 4th tree. This way, they are able to pluck 10 apples and the energy spent is 15.

Input: N = 3, M = 3 , a[] = {3, 3, 3}, b[] = {3, 5, 1}
Output: {9, 27}
Explanation: All apples can be plucked as friends can distribute them equally.

Approach: This can be solved with the following idea:

By checking the number of apples that can be distributed among m friends (Number of apples % m). Using Priority queue, we can easily find out minimum energy to get the apples. As it always optimal to get the apples using minimum energy given in B. Then find the energy required for all friends.

Below are the steps involved:

  • Initialize a priority_queue, the top element stores the minimum element.
  • Count the total number of apples.
  • Check the number of apples that can be given to each friend.
  • Now, to minimize energy:
    • Iterate over priority_queue to check how many apples are there for that energy.
    • According to that, we can decrease the total.
  • Return {total, energy}.

Below is the implementation of the code:

C++




// C++ Implementation
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
 
// Function to calculate maximum apples and minimum
// energy
vector<long long> calc(int n, int m, vector<int> a,
                    vector<int> b)
{
 
    // Function to store ans
    vector<long long> ans;
 
    // Priority queue instialising
    priority_queue<pair<long long, long long>,
                vector<pair<long long, long long> >,
                greater<pair<long long, long long> > >
        pq;
 
    // Iterate over energy array
    for (int i = 0; i < n; i++) {
 
        pq.push(make_pair(b[i], i));
    }
 
    // Calculate total apples
    long long total = 0;
    for (int i = 0; i < n; i++) {
        total += a[i];
    }
 
    // Count apples per friend
    total -= total % m;
 
    long long energy = 0;
    ans.push_back(total);
 
    // Count minimum energy possible
    while (total > 0) {
 
        // If total apples are more
        if (a[pq.top().second] <= total) {
            energy
                += (pq.top().first) * (a[pq.top().second]);
            total -= a[pq.top().second];
            pq.pop();
        }
 
        // If apple count is less
        else if (a[pq.top().second] > total) {
 
            energy += (pq.top().first) * (total);
            total = 0;
        }
    }
 
    // Add energy to ans
    ans.push_back(energy);
 
    return ans;
}
 
// Driver code
int main()
{
 
    int n = 4;
    int m = 4;
 
    vector<int> a = { 1, 1, 2, 1 };
    vector<int> b = { 2, 3, 4, 4 };
 
    // Function call
    vector<long long> ans = calc(n, m, a, b);
 
    for (auto a : ans) {
        cout << a << " ";
    }
    return 0;
}


Java




import java.util.*;
 
public class Solution {
 
    // Function to calculate maximum apples and minimum
    // energy
    public static List<Long> calc(int n, int m, List<Integer> a, List<Integer> b) {
 
        // Function to store ans
        List<Long> ans = new ArrayList<>();
 
        // Priority queue initialization
        PriorityQueue<Pair<Long, Long>> pq = new PriorityQueue<>(Comparator.comparingLong(Pair::getFirst));
 
        // Iterate over energy array
        for (int i = 0; i < n; i++) {
            pq.offer(new Pair<>((long) b.get(i), (long) i));
        }
 
        // Calculate total apples
        long total = 0;
        for (int i = 0; i < n; i++) {
            total += a.get(i);
        }
 
        // Count apples per friend
        total -= total % m;
 
        long energy = 0;
        ans.add(total);
 
        // Count minimum energy possible
        while (total > 0) {
 
            // If total apples are more
            if (a.get((int) (long) pq.peek().getSecond()) <= total) {
                energy += pq.peek().getFirst() * a.get((int) (long) pq.peek().getSecond());
                total -= a.get((int) (long) pq.peek().getSecond());
                pq.poll();
            }
 
            // If apple count is less
            else if (a.get((int) (long) pq.peek().getSecond()) > total) {
                energy += pq.peek().getFirst() * total;
                total = 0;
            }
        }
 
        // Add energy to ans
        ans.add(energy);
 
        return ans;
    }
 
    // Driver code
    public static void main(String[] args) {
 
        int n = 4;
        int m = 4;
 
        List<Integer> a = Arrays.asList(1, 1, 2, 1);
        List<Integer> b = Arrays.asList(2, 3, 4, 4);
 
        // Function call
        List<Long> ans = calc(n, m, a, b);
 
        for (long val : ans) {
            System.out.print(val + " ");
        }
    }
 
    // Custom Pair class since Java doesn't have a built-in Pair class
    static class Pair<K, V> {
        private final K first;
        private final V second;
 
        Pair(K first, V second) {
            this.first = first;
            this.second = second;
        }
 
        public K getFirst() {
            return first;
        }
 
        public V getSecond() {
            return second;
        }
    }
}
 
 
 
// This code is contributed by akshitaguprzj3


Python3




# Python Implementation
 
import heapq
 
# Function to calculate maximum apples and minimum energy
def calc(n, m, a, b):
    # List to store results
    ans = []
 
    # Priority queue initialization
    pq = []
 
    # Iterate over energy array
    for i in range(n):
        heapq.heappush(pq, (b[i], i))
 
    # Calculate total apples
    total = sum(a)
 
    # Count apples per friend
    total -= total % m
 
    energy = 0
    ans.append(total)
 
    # Count minimum energy possible
    while total > 0:
        # If total apples are more
        if a[pq[0][1]] <= total:
            energy += pq[0][0] * a[pq[0][1]]
            total -= a[pq[0][1]]
            heapq.heappop(pq)
        # If apple count is less
        elif a[pq[0][1]] > total:
            energy += pq[0][0] * total
            total = 0
 
    # Add energy to ans
    ans.append(energy)
 
    return ans
 
# Driver code
if __name__ == "__main__":
    n = 4
    m = 4
 
    a = [1, 1, 2, 1]
    b = [2, 3, 4, 4]
 
    # Function call
    ans = calc(n, m, a, b)
 
    for a in ans:
        print(a, end=" ")
 
 
# This code is contributed by Sakshi


C#




using System;
using System.Collections.Generic;
 
class Program
{
    // Function to calculate maximum apples and minimum energy
    static List<long> Calc(int n, int m, List<int> a, List<int> b)
    {
        // Function to store ans
        List<long> ans = new List<long>();
 
        // Priority queue initializing
        SortedSet<(long, long)> pq = new SortedSet<(long, long)>();
 
        // Iterate over energy array
        for (int i = 0; i < n; i++)
        {
            pq.Add((b[i], i));
        }
 
        // Calculate total apples
        long total = 0;
        foreach (int apples in a)
        {
            total += apples;
        }
 
        // Count apples per friend
        total -= total % m;
 
        long energy = 0;
        ans.Add(total);
 
        // Count minimum energy possible
        while (total > 0)
        {
            // If total apples are more
            if (a[(int)pq.Min.Item2] <= total)
            {
                energy += pq.Min.Item1 * a[(int)pq.Min.Item2];
                total -= a[(int)pq.Min.Item2];
                pq.Remove(pq.Min);
            }
            // If apple count is less
            else if (a[(int)pq.Min.Item2] > total)
            {
                energy += pq.Min.Item1 * total;
                total = 0;
            }
        }
 
        // Add energy to ans
        ans.Add(energy);
 
        return ans;
    }
 
    // Driver code
    static void Main()
    {
        int n = 4;
        int m = 4;
 
        List<int> a = new List<int> { 1, 1, 2, 1 };
        List<int> b = new List<int> { 2, 3, 4, 4 };
 
        // Function call
        List<long> ans = Calc(n, m, a, b);
 
        foreach (long value in ans)
        {
            Console.Write(value + " ");
        }
    }
}


Javascript




function calc(n, m, a, b) {
    // Store the answer
    let ans = [];
 
    // Priority queue (min-heap) initialization
    let pq = new PriorityQueue((a, b) => a[0] < b[0]);
 
    // Populate the priority queue
    for (let i = 0; i < n; i++) {
        pq.enqueue([b[i], a[i]]);
    }
 
    // Calculate total apples
    let total = a.reduce((acc, val) => acc + val, 0);
    total -= total % m;
 
    let energy = 0;
    ans.push(total);
 
    // Calculate minimum energy
    while (total > 0) {
        let [curEnergy, curApples] = pq.dequeue();
 
        if (curApples <= total) {
            energy += curEnergy * curApples;
            total -= curApples;
        } else {
            energy += curEnergy * total;
            total = 0;
        }
    }
 
    ans.push(energy);
 
    return ans;
}
 
// Simple priority queue implementation for demonstration
class PriorityQueue {
    constructor(comparator) {
        this.values = [];
        this.comparator = comparator || ((a, b) => a > b);
    }
 
    enqueue(val) {
        this.values.push(val);
        this.values.sort((a, b) => this.comparator(a, b) ? 1 : -1);
    }
 
    dequeue() {
        return this.values.shift();
    }
}
 
// Driver code
function main() {
    const n = 4;
    const m = 4;
 
    const a = [1, 1, 2, 1];
    const b = [2, 3, 4, 4];
 
    const ans = calc(n, m, a, b);
 
    console.log(ans.join(' '));
}
 
main();
 
// This code is contributed by akshitaguprzj3


Output

4 13 

Complexity Analysis:

Time Complexity: O(N log N)
Auxiliary Space: O(N)



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads