Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimum and maximum number of N chocolates after distribution among K students

  • Last Updated : 02 Jun, 2021

Given N Chocolates and K students, the task is to find how to divide the chocolates such that the difference between the minimum and maximum chocolate received by all students is minimized. Print the value of minimum and maximum chocolate distribution.
Examples
 

Input: N = 7, K = 3
Output: Min = 2, Max = 3
Distribution is 2 2 3

Input: N = 100, K = 10
Output: 10 10
Distribution is 10 10 10 10 10 10 10 10 10 10 

 

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

Approach: The difference will only be minimized when each student gets an equal number of candies that is N % k = 0 but if N % K != 0 then each student will 1st get (N-N%k)/k amount of candy then the rest N%k amount of candies can be distributed to N%K students by giving them each 1 candy. Thus there will be just 1 more candy than the (N-N%k)/k if N % K != 0 with a student.
Below is the implementation of the above approach:
 

CPP




// CPP implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Driver code
int main(){
 
    int n = 7, k = 3;
 
    if(n % k == 0)
        cout<<n/k<<" "<<n/k;
    else
        cout<<((n-(n % k))/k)<<" "
            <<(((n-(n % k))/k) + 1);
 
    return 0;
}
 
// This code is contributed by Sanjit_Prasad

Java




// Java implementation of the above approach
 
public class Improve {
     
    // Driver code
    public static void main(String args[])
    {
            int n = 7 ;
            int k = 3 ;
             
            if (n % k == 0)
                System.out.println(n / k +" " + n / k);
             
            else
                System.out.println((n-(n % k)) / k + " "
                        + (((n-(n % k))/ k) + 1) ) ;
 
    }
    // This Code is contributed by ANKITRAI1
}

Python




# Python implementation of the above approach
 
n, k = 7, 3
if(n % k == 0):
    print(n//k, n//k)
 
else:
    print((n-n % k)//k, (n-n % k)//k + 1)

C#




// C# implementation of the
// above approach
using System;
 
class GFG
{
 
// Driver code
public static void Main()
{
    int n = 7 ;
    int k = 3 ;
     
    if (n % k == 0)
        Console.WriteLine(n / k +
                    " " + n / k);
     
    else
        Console.WriteLine((n - (n % k)) / k +
                  " " + (((n - (n % k)) / k) + 1));
}
}
 
// This code is contributed
// by inder_verama

PHP




<?php
// PHP implementation of the above approach
 
// Driver code
$n = 7; $k = 3;
 
if($n % $k == 0)
    echo $n/$k . " " . $n/$k;
else
    echo (($n - ($n % $k)) / $k) . " " .
        ((($n - ($n % $k)) / $k) + 1);
 
// This code is contributed
// by Akanksha Rai(Abby_akku)
?>

Javascript




<script>
 
// JavaScript implementation of the above approach
 
 
// Driver code
var n = 7 ;
var k = 3 ;
 
if (n % k == 0)
    document.write(n / k +" " + n / k);
 
else
    document.write((n-(n % k)) / k + " "
            + (((n-(n % k))/ k) + 1) ) ;
 
 
// This code is contributed by 29AjayKumar
 
</script>
Output: 
2 3

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!