Minimum and maximum number of N chocolates after distribution among K students

Given N Chocolates and K students, the task is to find how to divide the chocolates such that the difference between the minimum and maximum chocolate received by all students is minimized. Print the value of minimum and maximum chocolate distribution.

Examples:

Input: N = 7, K = 3
Output: Min = 2, Max = 3
Distribution is 2 2 3

Input: N = 100, K = 10
Output: 10 10
Distribution is 10 10 10 10 10 10 10 10 10 10 


Approach: The difference will only be minimized when each student gets an equal number of candies that is N % k = 0 but if N % K != 0 then each student will 1st get (N-N%k)/k amount of candy then the rest N%k amount of candies can be distributed to N%K students by giving them each 1 candy. Thus there will be just 1 more candy than the (N-N%k)/k if N % K != 0 with a student.

Below is the implementation of the above approach:

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Driver code
int main(){
  
    int n = 7, k = 3;
  
    if(n % k == 0)
        cout<<n/k<<" "<<n/k;
    else
        cout<<((n-(n % k))/k)<<" "
            <<(((n-(n % k))/k) + 1);
  
    return 0;
}
  
// This code is contributed by Sanjit_Prasad

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach 
  
public class Improve {
      
    // Driver code
    public static void main(String args[])
    {
            int n = 7 ;
            int k = 3 ;
              
            if (n % k == 0)
                System.out.println(n / k +" " + n / k);
              
            else
                System.out.println((n-(n % k)) / k + " "
                        + (((n-(n % k))/ k) + 1) ) ;
  
    }
    // This Code is contributed by ANKITRAI1
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python implementation of the above approach
  
n, k = 7, 3
if(n % k == 0):
    print(n//k, n//k)
  
else:
    print((n-n % k)//k, (n-n % k)//k + 1)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the 
// above approach 
using System;
  
class GFG 
{
  
// Driver code
public static void Main()
{
    int n = 7 ;
    int k = 3 ;
      
    if (n % k == 0)
        Console.WriteLine(n / k + 
                    " " + n / k);
      
    else
        Console.WriteLine((n - (n % k)) / k + 
                  " " + (((n - (n % k)) / k) + 1));
}
}
  
// This code is contributed 
// by inder_verama

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the above approach
  
// Driver code
$n = 7; $k = 3;
  
if($n % $k == 0)
    echo $n/$k . " " . $n/$k;
else
    echo (($n - ($n % $k)) / $k) . " " .
        ((($n - ($n % $k)) / $k) + 1);
  
// This code is contributed 
// by Akanksha Rai(Abby_akku)
?>

chevron_right


Output:

2 3


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.