Prerequisite – Introduction and types of Relations

Relations are represented using ordered pairs, matrix and digraphs:

**Ordered Pairs –**

In this set of ordered pairs of x and y are used to represent relation. In this corresponding values of x and y are represented using parenthesis.Example: {(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)} This represent square of a number which means if x=1 then y = x*x = 1 and so on.

**Representing using Matrix –**

In this zero-one is used to represent the relationship that exists between two sets. In this if a element is present then it is represented by 1 else it is represented by 0. In this method it is easy to judge if a relation is reflexive, symmetric or transitive just by looking at the matrix.Suppose R is a relation from X={x1, x2, .....xn} to Y={y1, y2....yn} It is represented by :- M[i, j]={1, if (Xi, Yj) belongs to R 0, if (Xi, Yj) does not belong to R}

If A={1, 2, 3} and B={1, 2} and Relation R is

R = {(2, 1), (3, 1), (3, 2)}

then all corresponding value of Relation will be represented by “1” else “0”.

It is represented as:

It’s corresponding possible relations are:

**Digraph –**

A digraph is known was directed graph. It consists of set ‘V’ of vertices and with the edges ‘E’. Here E is represented by ordered pair of Vertices.

In the edge (a, b), a is the initial vertex and b is the final vertex.

If edge is (a, a) then this is regarded as loop.Example: Suppose we have relation forming

R = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

This relation is represented using digraph as:

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.