Discrete Cosine Transform (Algorithm and Program)

Image Compression : Image is stored or transmitted with having pixel value. It can be compressed by reducing the value its every pixel contains. Image compression is basically of two types :
1. Lossless compression : In this type of compression, after recovering image is exactly become same as that was before applying compression techniques and so, its quality didn’t gets reduced.
2. Lossy compression : In this type of compression, after recovering we can’t get exactly as older data and that’s why the quality of image gets significantly reduced. But this type of compression results in very high compression of image data and is very useful in transmitting image over network.

Discrete Cosine Transform is used in lossy image compression because it has very strong energy compaction, i.e., its large amount of information is stored in very low frequency component of a signal and rest other frequency having very small data which can be stored by using very less number of bits (usually, at most 2 or 3 bit).
To perform DCT Transformation on an image, first we have to fetch image file information (pixel value in term of integer having range 0 – 255) which we divides in block of 8 X 8 matrix and then we apply discrete cosine transform on that block of data.

After applying discrete cosine transform, we will see that its more than 90% data will be in lower frequency component. For simplicity, we took a matrix of size 8 X 8 having all value as 255 (considering image to be completely white) and we are going to perform 2-D discrete cosine transform on that to observe the output.

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Algorithm : Let we are having a 2-D variable named matrix of dimension 8 X 8 which contains image information and a 2-D variable named dct of same dimension which contain the information after applying discrete cosine transform. So, we have the formula
dct[i][j] = ci * cj (sum(k=0 to m-1) sum(l=0 to n-1) matrix[k][l] * cos((2*k+1) *i*pi/2*m) * cos((2*l+1) *j*pi/2*n)
where ci= 1/sqrt(m) if i=0 else ci= sqrt(2)/sqrt(m) and
similarly, cj= 1/sqrt(n) if j=0 else cj= sqrt(2)/sqrt(n)
and we have to apply this formula to all the value, i.e., from i=0 to m-1 and j=0 to n-1

Here, sum(k=0 to m-1) denotes summation of values from k=0 to k=m-1.
In this code, both m and n is equal to 8 and pi is defined as 3.142857.

C++

 // CPP program to perform discrete cosine transform #include using namespace std; #define pi 3.142857 const int m = 8, n = 8;    // Function to find discrete cosine transform and print it int dctTransform(int matrix[][n]) {     int i, j, k, l;        // dct will store the discrete cosine transform     float dct[m][n];        float ci, cj, dct1, sum;        for (i = 0; i < m; i++) {         for (j = 0; j < n; j++) {                // ci and cj depends on frequency as well as             // number of row and columns of specified matrix             if (i == 0)                 ci = 1 / sqrt(m);             else                 ci = sqrt(2) / sqrt(m);             if (j == 0)                 cj = 1 / sqrt(n);             else                 cj = sqrt(2) / sqrt(n);                // sum will temporarily store the sum of              // cosine signals             sum = 0;             for (k = 0; k < m; k++) {                 for (l = 0; l < n; l++) {                     dct1 = matrix[k][l] *                             cos((2 * k + 1) * i * pi / (2 * m)) *                             cos((2 * l + 1) * j * pi / (2 * n));                     sum = sum + dct1;                 }             }             dct[i][j] = ci * cj * sum;         }     }        for (i = 0; i < m; i++) {         for (j = 0; j < n; j++) {             printf("%f\t", dct[i][j]);         }         printf("\n");     } }    // Driver code int main() {     int matrix[m][n] = { { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 } };     dctTransform(matrix);     return 0; }

Java

 // Java program to perform discrete cosine transform    import java.util.*;    class GFG  {     public static int n = 8,m = 8;     public static double pi = 3.142857;            // Function to find discrete cosine transform and print it     static strictfp void dctTransform(int matrix[][])     {         int i, j, k, l;             // dct will store the discrete cosine transform         double[][] dct = new double[m][n];             double ci, cj, dct1, sum;             for (i = 0; i < m; i++)          {             for (j = 0; j < n; j++)              {                 // ci and cj depends on frequency as well as                 // number of row and columns of specified matrix                 if (i == 0)                     ci = 1 / Math.sqrt(m);                 else                     ci = Math.sqrt(2) / Math.sqrt(m);                                        if (j == 0)                     cj = 1 / Math.sqrt(n);                 else                     cj = Math.sqrt(2) / Math.sqrt(n);                     // sum will temporarily store the sum of                  // cosine signals                 sum = 0;                 for (k = 0; k < m; k++)                  {                     for (l = 0; l < n; l++)                      {                         dct1 = matrix[k][l] *                                 Math.cos((2 * k + 1) * i * pi / (2 * m)) *                                 Math.cos((2 * l + 1) * j * pi / (2 * n));                         sum = sum + dct1;                     }                 }                 dct[i][j] = ci * cj * sum;             }         }             for (i = 0; i < m; i++)          {             for (j = 0; j < n; j++)                  System.out.printf("%f\t", dct[i][j]);             System.out.println();         }     }            // driver program     public static void main (String[] args)      {         int matrix[][] = { { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 },                          { 255, 255, 255, 255, 255, 255, 255, 255 } };         dctTransform(matrix);     } }    // Contributed by Pramod Kumar

Output:

2039.999878    -1.168211    1.190998    -1.230618    1.289227    -1.370580    1.480267    -1.626942
-1.167731       0.000664    -0.000694    0.000698    -0.000748    0.000774    -0.000837    0.000920
1.191004       -0.000694    0.000710    -0.000710    0.000751    -0.000801    0.000864    -0.000950
-1.230645       0.000687    -0.000721    0.000744    -0.000771    0.000837    -0.000891    0.000975
1.289146       -0.000751    0.000740    -0.000767    0.000824    -0.000864    0.000946    -0.001026
-1.370624       0.000744    -0.000820    0.000834    -0.000858    0.000898    -0.000998    0.001093
1.480278       -0.000856    0.000870    -0.000895    0.000944    -0.001000    0.001080    -0.001177
-1.626932       0.000933    -0.000940    0.000975    -0.001024    0.001089    -0.001175    0.001298

This article is contributed by Aditya Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.