Skip to content
Related Articles

Related Articles

Digital High Pass Butterworth Filter in Python
  • Last Updated : 17 Dec, 2020

In this article, we are going to discuss how to design a Digital High Pass Butterworth Filter using Python. The Butterworth filter is a type of signal processing filter designed to have a frequency response as flat as possible in the pass band. Let us take the below specifications to design the filter and observe the Magnitude, Phase & Impulse Response of the Digital Butterworth Filter.

What is a High Pass Filter?

A high-pass filter is an electronic filter that passes signals with a frequency higher than a certain cutoff frequency and attenuates signals with frequencies lower than the cutoff frequency. The attenuation for each frequency depends on the filter design.

Difference between a Digital High Pass Filter & Digital Low Pass Filter:

The most striking difference is in the amplitude response of the filters, we can clearly observe that in case of High Pass Filter the filter passes signals with a frequency higher than a certain cutoff frequency and attenuates signals with frequencies lower than the cutoff frequency while in case of Low Pass Filter the filter passes signals with a frequency lower than a certain cutoff frequency and attenuates all signals with frequencies higher than the specified cutoff value.

The specifications are as follows:  

  • Sampling rate of 3.5 kHz
  • Pass band edge frequency of 1050 Hz
  • Stop band edge frequency of 600Hz
  • Pass band ripple of 1 dB
  • Minimum stop band attenuation of 50 dB

We will plot the magnitude, phase, and impulse response of the filter.



Step-by-step Approach:

Step 1: Importing all the necessary libraries.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Import required modules 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import math

chevron_right


Step 2: Define variables with the given specifications of the filter.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Specifications of Filter 
    
 # sampling frequency 
f_sample = 3500 
    
# pass band frequency 
f_pass = 1050 
    
# stop band frequency 
f_stop = 600 
    
# pass band ripple 
fs = 0.5
    
# pass band freq in radian 
wp = f_pass/(f_sample/2)   
    
# stop band freq in radian 
ws = f_stop/(f_sample/2)  
    
# Sampling Time 
Td = 1  
    
 # pass band ripple 
g_pass = 1 
    
# stop band attenuation 
g_stop = 50

chevron_right


Step3: Building the filter using signal.buttord() method.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Conversion to prewrapped analog frequency 
omega_p = (2/Td)*np.tan(wp/2
omega_s = (2/Td)*np.tan(ws/2
    
    
# Design of Filter using signal.buttord function 
N, Wn = signal.buttord(omega_p, omega_s, g_pass, g_stop, analog=True
    
    
# Printing the values of order & cut-off frequency! 
print("Order of the Filter=", N)  # N is the order 
# Wn is the cut-off freq of the filter 
print("Cut-off frequency= {:.3f} rad/s ".format(Wn)) 
    
    
# Conversion in Z-domain 
    
# b is the numerator of the filter & a is the denominator 
b, a = signal.butter(N, Wn, 'high', True
z, p = signal.bilinear(b, a, fs) 
# w is the freq in z-domain & h is the magnitude in z-domain 
w, h = signal.freqz(z, p, 512)

chevron_right


Output:



Step 4: Plotting the Magnitude Response.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Magnitude Response
plt.semilogx(w, 20*np.log10(abs(h)))
plt.xscale('log')
  
plt.title('Butterworth filter frequency response')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [dB]')
plt.margins(0, 0.1)
  
plt.grid(which='both', axis='both')
plt.axvline(100, color='green')
plt.show()

chevron_right


Output:

Step 5: Plotting the Impulse Response.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Impulse respnse
imp = signal.unit_impulse(40)
c, d = signal.butter(N, 0.5)
response = signal.lfilter(c, d, imp)
  
# Illustrating impulse response
plt.stem(np.arange(0, 40), imp, markerfmt='D', use_line_collection=True)
plt.stem(np.arange(0, 40), response, use_line_collection=True)
plt.margins(0, 0.1)
  
plt.xlabel('Time [samples]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()

chevron_right


Output:

Step 6: Plotting the Phase Response.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Phase response
fig, ax1 = plt.subplots()
  
ax1.set_title('Digital filter frequency response')
ax1.set_ylabel('Angle(radians)', color='g')
ax1.set_xlabel('Frequency [Hz]')
  
angles = np.unwrap(np.angle(h))
ax1.plot(w/2*np.pi, angles, 'g')
ax1.grid()
ax1.axis('tight')
  
plt.show()

chevron_right


Output:

Below is the complete program based on the above approach:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import required modules 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy import signal 
import math
  
  
# Specifications of Filter 
    
 # sampling frequency 
f_sample = 3500 
    
# pass band frequency 
f_pass = 1050 
    
# stop band frequency 
f_stop = 600 
    
# pass band ripple 
fs = 0.5
    
# pass band freq in radian 
wp = f_pass/(f_sample/2)   
    
# stop band freq in radian 
ws = f_stop/(f_sample/2)  
    
# Sampling Time 
Td = 1  
    
 # pass band ripple 
g_pass = 1 
    
# stop band attenuation 
g_stop = 50 
  
# Conversion to prewrapped analog frequency 
omega_p = (2/Td)*np.tan(wp/2
omega_s = (2/Td)*np.tan(ws/2
    
    
# Design of Filter using signal.buttord function 
N, Wn = signal.buttord(omega_p, omega_s, g_pass, g_stop, analog=True
    
    
# Printing the values of order & cut-off frequency! 
print("Order of the Filter=", N)  # N is the order 
# Wn is the cut-off freq of the filter 
print("Cut-off frequency= {:.3f} rad/s ".format(Wn)) 
    
    
# Conversion in Z-domain 
    
# b is the numerator of the filter & a is the denominator 
b, a = signal.butter(N, Wn, 'high', True
z, p = signal.bilinear(b, a, fs) 
  
# w is the freq in z-domain & h is the magnitude in z-domain 
w, h = signal.freqz(z, p, 512)
  
  
# Magnitude Response 
plt.semilogx(w, 20*np.log10(abs(h))) 
plt.xscale('log'
plt.title('Butterworth filter frequency response'
plt.xlabel('Frequency [Hz]'
plt.ylabel('Amplitude [dB]'
plt.margins(0, 0.1
plt.grid(which='both', axis='both'
plt.axvline(100, color='green'
plt.show()
  
  
# Impulse Response
imp = signal.unit_impulse(40)
c, d = signal.butter(N, 0.5)
response = signal.lfilter(c, d, imp)
plt.stem(np.arange(0, 40),imp,markerfmt='D',use_line_collection=True)
plt.stem(np.arange(0,40), response,use_line_collection=True)
plt.margins(0, 0.1)
plt.xlabel('Time [samples]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
  
  
# Phase Response
fig, ax1 = plt.subplots()
ax1.set_title('Digital filter frequency response')
ax1.set_ylabel('Angle(radians)', color='g')
ax1.set_xlabel('Frequency [Hz]')
angles = np.unwrap(np.angle(h))
ax1.plot(w/2*np.pi, angles, 'g')
ax1.grid()
ax1.axis('tight')
plt.show()

chevron_right


Output:


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :