Differential or Derivatives in MATLAB
Differentiation of a function y = f(x) tells us how the value of y changes with respect to change in x. It can also be termed as the slope of a function.
Derivative of a function f(x) wrt to x is represented as
MATLAB allows users to calculate the derivative of a function using diff() method. Different syntax of diff() method are:
- f’ = diff(f)
- f’ = diff(f, a)
- f’ = diff(f, b, 2)
f’ = diff(f)
It returns the derivative of function f(x) wrt variable x.
Example 1:
Matlab
% Create a symbolic expression in variable x syms x f = cos(x); disp( "f(x) :" ); disp(f); % Derivative of f(x) d = diff(f); disp( "Derivative of f(x) :" ); disp(d); |
Output :
Example 2: Evaluating the derivative of a function at a specified value using subs(y,x,k).
- subs(y,x,k), it gives the value of function y at x = k.
Matlab
% Create a symbolic expression in # variable x syms x f = cos(x); disp( "f(x) :" ); disp(f); % Derivative of f(x) d = diff(f); val = subs(d,x,pi/2); disp( "Value of f'(x) at x = pi/2:" ); disp(val); |
Output :
f’ = diff(f, a)
- It returns the derivative of function f with respect to variable a.
Matlab
% Create a symbolic expression in variable x syms x t; f = sin(x*t); disp( "f(x) :" ); disp(f); % Derivative of f(x,t) wrt t d = diff(f,t); disp( "Derivative of f(x,t) wrt t:" ); disp(d); |
Output :
f’ = diff(f, b, 2)
It returns the double derivative of function f with respect to variable b.
Example 1:
Matlab
% Create a symbolic expression in % variable x,n syms x n; f = x^n; disp( "f(x,n) :" ); disp(f); % Double Derivative of f(x,n) wrt x d = diff(f,x,2); disp( "Double Derivative of f(x,n) wrt x:" ); disp(d); |
Output :
In the same way, you can also calculate the k-order derivative of function f using diff(f,x,k).
Example 2:
Calculating the partial derivative } using Jacobian matrix and determinant.
Matlab
% Create a symbolic expression in variable % u and v syms u v; f = u^2; g = sin(v)*(3*u); disp( "f(u,v) :" ); disp(f); disp( "g(u,v) :" ); disp(g); % Jacobian matrix of function f(u,v) and % g(u,v) J = jacobian([f; g], [u v]); disp( "Jacobian matrix :" ); disp(J); % Determinant of Jacobian matrix d = det(J); disp( "Determinant of Jacobian matrix:" ); disp(d); |
Output :
Please Login to comment...