Skip to content
Related Articles

Related Articles

Improve Article

Decorator to print Function call details in Python

  • Last Updated : 08 May, 2020

Decorators in Python are the design pattern that allows the users to add new functionalities to an existing object without the need to modify its structure. Decorators are generally called before defining a function the user wants to decorate.

Example:




# defining a decorator 
def hello_decorator(func): 
    
    # inner1 is a Wrapper function in  
    # which the argument is called 
        
    # inner function can access the outer local 
    # functions like in this case "func" 
    def inner1(): 
        print("Hello, this is before function execution"
    
        # calling the actual function now 
        # inside the wrapper function. 
        func() 
    
        print("This is after function execution"
            
    return inner1 
    
    
# defining a function, to be called inside wrapper 
def function_to_be_used(): 
    print("This is inside the function !!"
    
    
# passing 'function_to_be_used' inside the 
# decorator to control its behavior 
function_to_be_used = hello_decorator(function_to_be_used) 
    
    
# calling the function 
function_to_be_used() 
Output:
Hello, this is before function execution
This is inside the function !!
This is after function execution

Note: For more information, refer to Decorators in Python

Decorator to print Function call details

Let’s consider a scenario where you have written a very lengthy code and want to know the function call details. So what you can do is scroll through your code each and every time for different functions to know their details or you can work smartly. You can create a decorator that can print the details of any function you want.



To do this the functions in Python certain attributes. One such attribute is __code__ that returns the called function bytecode. The __code__ attributes also have certain attributes that will help us in performing our tasks. We will be using the co_varnames attribute that returns the tuple of names of arguments and local variables and co_argcount that returns the number of arguments (not including keyword-only arguments, * or ** args). Let’s see the below implementation of such decorator using these discussed attributes.

Example:




# Decorator to print function call
# details
def function_details(func):
      
      
    # Getting the argument names of the
    # called function
    argnames = func.__code__.co_varnames[:func.__code__.co_argcount]
      
    # Getting the Function name of the
    # called function
    fname = func.__name__
      
      
    def inner_func(*args, **kwargs):
          
        print(fname, "(", end = "")
          
        # printing the function arguments
        print(', '.join( '% s = % r' % entry
            for entry in zip(argnames, args[:len(argnames)])), end = ", ")
          
        # Printing the variable length Arguments
        print("args =", list(args[len(argnames):]), end = ", ")
          
        # Printing the variable length keyword
        # arguments
        print("kwargs =", kwargs, end = "")
        print(")")
          
    return inner_func
  
  
# Driver Code
@function_details
def GFG(a, b = 1, *args, **kwargs):
    pass
  
GFG(1, 2, 3, 4, 5, d = 6, g = 12.9)
GFG(1, 2, 3)
GFG(1, 2, d = 'Geeks')
Output:
GFG (a = 1, b = 2, args = [3, 4, 5], kwargs = {'d': 6, 'g': 12.9})
GFG (a = 1, b = 2, args = [3], kwargs = {})
GFG (a = 1, b = 2, args = [], kwargs = {'d': 'Geeks'})

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :