Count the pairs in an array such that the difference between them and their indices is equal

Given an array arr[] of size N, the task is to count the number of pairs (arr[i], arr[j]) such that arr[j] – arr[i] = j – i.

Examples:

Input: arr[] = {5, 2, 7}
Output: 1
The only valid pair is (arr[0], arr[2]) as 7 – 5 = 2 – 0 = 2.

Input: arr[] = {1, 2, 3, 4}
Output: 6

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: A pair (arr[i], arr[j]) is said to be valid if (arr[j] – arr[i]) = (j – i), it can also be written as (arr[j] – j) = (arr[i] – i) which is the difference of the element with its index. Now, the task is to divide the array into groups such that every group has equal difference of the element with its index then for every group if it has N elements, the count of possible pairs will be (N * (N – 1)) / 2.

Below is the implementation of the above approach:

C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the count ` `// of all valid pairs ` `int` `countPairs(``int` `arr[], ``int` `n) ` `{ ` ` `  `    ``// To store the frequencies ` `    ``// of (arr[i] - i) ` `    ``unordered_map<``int``, ``int``> map; ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``map[arr[i] - i]++; ` ` `  `    ``// To store the required count ` `    ``int` `res = 0; ` `    ``for` `(``auto` `x : map) { ` `        ``int` `cnt = x.second; ` ` `  `        ``// If cnt is the number of elements ` `        ``// whose differecne with their index ` `        ``// is same then ((cnt * (cnt - 1)) / 2) ` `        ``// such pairs are possible ` `        ``res += ((cnt * (cnt - 1)) / 2); ` `    ``} ` ` `  `    ``return` `res; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, 5, 6, 7, 9 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]); ` ` `  `    ``cout << countPairs(arr, n); ` ` `  `    ``return` `0; ` `} `

Java

 `// Java implementation of the approach ` `import` `java.util.HashMap;  ` ` `  `class` `GFG ` `{ ` `     `  `    ``// Function to return the count  ` `    ``// of all valid pairs  ` `    ``static` `int` `countPairs(``int` `arr[], ``int` `n)  ` `    ``{  ` `     `  `        ``// To store the frequencies  ` `        ``// of (arr[i] - i)  ` `        ``HashMap map = ``new` `HashMap();  ` `        ``for` `(``int` `i = ``0``; i < n; i++)  ` `            ``map.put(arr[i] - i, ``0``);  ` `         `  `        ``for` `(``int` `i = ``0``; i < n; i++)  ` `            ``map.put(arr[i] - i, map.get(arr[i] - i) + ``1``);  ` `     `  `        ``// To store the required count  ` `        ``int` `res = ``0``;  ` `        ``for` `(``int` `x : map.values()) ` `        ``{ ` `            ``int` `cnt = x;  ` `     `  `            ``// If cnt is the number of elements  ` `            ``// whose differecne with their index  ` `            ``// is same then ((cnt * (cnt - 1)) / 2)  ` `            ``// such pairs are possible  ` `            ``res += ((cnt * (cnt - ``1``)) / ``2``);  ` `        ``}  ` `     `  `        ``return` `res;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{  ` `        ``int` `arr[] = { ``1``, ``5``, ``6``, ``7``, ``9` `};  ` `        ``int` `n = arr.length; ` `     `  `        ``System.out.println(countPairs(arr, n));  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

Python3

 `# Python3 implementation of the approach ` ` `  `# Function to return the count ` `# of all valid pairs ` `def` `countPairs(arr, n): ` ` `  `    ``# To store the frequencies ` `    ``# of (arr[i] - i) ` `    ``map` `=` `dict``() ` `    ``for` `i ``in` `range``(n): ` `        ``map``[arr[i] ``-` `i] ``=` `map``.get(arr[i] ``-` `i, ``0``) ``+` `1` ` `  `    ``# To store the required count ` `    ``res ``=` `0` `    ``for` `x ``in` `map``: ` `        ``cnt ``=` `map``[x] ` ` `  `        ``# If cnt is the number of elements ` `        ``# whose differecne with their index ` `        ``# is same then ((cnt * (cnt - 1)) / 2) ` `        ``# such pairs are possible ` `        ``res ``+``=` `((cnt ``*` `(cnt ``-` `1``)) ``/``/` `2``) ` ` `  `    ``return` `res ` ` `  `# Driver code ` `arr ``=` `[``1``, ``5``, ``6``, ``7``, ``9``] ` `n ``=` `len``(arr) ` ` `  `print``(countPairs(arr, n)) ` ` `  `# This code is contributed by Mohit Kumar `

C#

 `// C# implementation of the approach ` `using` `System;  ` `using` `System.Collections.Generic; ` `class` `GFG ` `{ ` `     `  `    ``// Function to return the count  ` `    ``// of all valid pairs  ` `    ``static` `int` `countPairs(``int` `[]arr, ``int` `n)  ` `    ``{  ` `     `  `        ``// To store the frequencies  ` `        ``// of (arr[i] - i)  ` `        ``Dictionary<``int``,  ` `                   ``int``> map = ``new` `Dictionary<``int``,  ` `                                             ``int``>();  ` `        ``for` `(``int` `i = 0; i < n; i++)  ` `            ``map[arr[i] - i] = 0;  ` `         `  `        ``for` `(``int` `i = 0; i < n; i++)  ` `            ``map[arr[i] - i]++;  ` `     `  `        ``// To store the required count  ` `        ``int` `res = 0;  ` `        ``foreach``(KeyValuePair<``int``, ``int``> x ``in` `map) ` `        ``{ ` `            ``int` `cnt = x.Value;  ` `     `  `            ``// If cnt is the number of elements  ` `            ``// whose differecne with their index  ` `            ``// is same then ((cnt * (cnt - 1)) / 2)  ` `            ``// such pairs are possible  ` `            ``res += ((cnt * (cnt - 1)) / 2);  ` `        ``}  ` `        ``return` `res;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main (String []args)  ` `    ``{  ` `        ``int` `[]arr = { 1, 5, 6, 7, 9 };  ` `        ``int` `n = arr.Length; ` `     `  `        ``Console.WriteLine(countPairs(arr, n));  ` `    ``}  ` `} ` ` `  `// This code is contributed by Arnab Kundu `

Output:

```3
```

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.