# Count pairs in an array such that the absolute difference between them is ≥ K

• Difficulty Level : Easy
• Last Updated : 04 Aug, 2021

Given an array arr[] and an integer K, the task is to find the count of pairs (arr[i], arr[j]) from the array such that |arr[i] – arr[j]| ≥ K. Note that (arr[i], arr[j]) and arr[j], arr[i] will be counted only once.
Examples:

Input: arr[] = {1, 2, 3, 4}, K = 2
Output:
All valid pairs are (1, 3), (1, 4) and (2, 4)
Input: arr[] = {7, 4, 12, 56, 123}, K = 50
Output:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach: Sort the given array. Now for every element arr[i], find the first element on the right arr[j] such that (arr[j] – arr[i]) ≥ K. This is because after this element, every element will satisfy the same condition with arr[i] as the array is sorted and the count of elements that will make a valid pair with arr[i] will be (N – j) where N is the size of the given array.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the count of required pairs``int` `count(``int` `arr[], ``int` `n, ``int` `k)``{` `    ``// Sort the given array``    ``sort(arr, arr + n);` `    ``// To store the required count``    ``int` `cnt = 0;``    ``int` `i = 0, j = 1;` `    ``while` `(i < n && j < n) {` `        ``// Update j such that it is always > i``        ``j = (j <= i) ? (i + 1) : j;` `        ``// Find the first element arr[j] such that``        ``// (arr[j] - arr[i]) >= K``        ``// This is because after this element, all``        ``// the elements will have absolute difference``        ``// with arr[i] >= k and the count of``        ``// valid pairs will be (n - j)``        ``while` `(j < n && (arr[j] - arr[i]) < k)``            ``j++;` `        ``// Update the count of valid pairs``        ``cnt += (n - j);` `        ``// Get to the next element to repeat the steps``        ``i++;``    ``}` `    ``// Return the count``    ``return` `cnt;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 1, 2, 3, 4 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``int` `k = 2;` `    ``cout << count(arr, n, k);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.util.*;` `class` `solution``{` `// Function to return the count of required pairs``static` `int` `count(``int` `arr[], ``int` `n, ``int` `k)``{` `    ``// Sort the given array``    ``Arrays.sort(arr);` `    ``// To store the required count``    ``int` `cnt = ``0``;``    ``int` `i = ``0``, j = ``1``;` `    ``while` `(i < n && j < n) {` `        ``// Update j such that it is always > i``        ``j = (j <= i) ? (i + ``1``) : j;` `        ``// Find the first element arr[j] such that``        ``// (arr[j] - arr[i]) >= K``        ``// This is because after this element, all``        ``// the elements will have absolute difference``        ``// with arr[i] >= k and the count of``        ``// valid pairs will be (n - j)``        ``while` `(j < n && (arr[j] - arr[i]) < k)``            ``j++;` `        ``// Update the count of valid pairs``        ``cnt += (n - j);` `        ``// Get to the next element to repeat the steps``        ``i++;``    ``}` `    ``// Return the count``    ``return` `cnt;``}` `// Driver code``public` `static` `void` `main(String args[])``{``    ``int` `arr[] = { ``1``, ``2``, ``3``, ``4` `};``    ``int` `n = arr.length;``    ``int` `k = ``2``;` `    ``System.out.println(count(arr, n, k));` `}``}`

## Python3

 `# Python3 implementation of the approach` `# Function to return the count of required pairs``def` `count(arr, n, k) :` `    ``# Sort the given array``    ``arr.sort();` `    ``# To store the required count``    ``cnt ``=` `0``;``    ``i ``=` `0``; j ``=` `1``;` `    ``while` `(i < n ``and` `j < n) :` `        ``# Update j such that it is always > i``        ``if` `j <``=` `i :``            ``j ``=` `i ``+` `1``        ``else` `:``            ``j ``=` `j` `        ``# Find the first element arr[j] such that``        ``# (arr[j] - arr[i]) >= K``        ``# This is because after this element, all``        ``# the elements will have absolute difference``        ``# with arr[i] >= k and the count of``        ``# valid pairs will be (n - j)``        ``while` `(j < n ``and` `(arr[j] ``-` `arr[i]) < k) :``            ``j ``+``=` `1``;` `        ``# Update the count of valid pairs``        ``cnt ``+``=` `(n ``-` `j);` `        ``# Get to the next element to repeat the steps``        ``i ``+``=` `1``;` `    ``# Return the count``    ``return` `cnt;`  `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``arr ``=` `[ ``1``, ``2``, ``3``, ``4` `];``    ``n ``=` `len``(arr);``    ``k ``=` `2``;` `    ``print``(count(arr, n, k));``    ` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ` `// Function to return the count of required pairs``static` `int` `count(``int` `[]arr, ``int` `n, ``int` `k)``{` `    ``// Sort the given array``    ``Array.Sort(arr);` `    ``// To store the required count``    ``int` `cnt = 0;``    ``int` `i = 0, j = 1;` `    ``while` `(i < n && j < n)``    ``{` `        ``// Update j such that it is always > i``        ``j = (j <= i) ? (i + 1) : j;` `        ``// Find the first element arr[j] such that``        ``// (arr[j] - arr[i]) >= K``        ``// This is because after this element, all``        ``// the elements will have absolute difference``        ``// with arr[i] >= k and the count of``        ``// valid pairs will be (n - j)``        ``while` `(j < n && (arr[j] - arr[i]) < k)``            ``j++;` `        ``// Update the count of valid pairs``        ``cnt += (n - j);` `        ``// Get to the next element to repeat the steps``        ``i++;``    ``}` `    ``// Return the count``    ``return` `cnt;``}` `// Driver code``static` `public` `void` `Main ()``{``    ` `    ``int` `[]arr = { 1, 2, 3, 4 };``    ``int` `n = arr.Length;``    ``int` `k = 2;` `    ``Console.Write(count(arr, n, k));` `}``}` `// This code is contributed by jit_t.`

## Javascript

 ``
Output:
`3`

My Personal Notes arrow_drop_up