Count rows in a matrix that consist of same element

Given a matrix mat[][], the task is to count the number of rows in the matrix that consists of the same elements.

Examples:

Input: mat[][] = {{1, 1, 1}, {1, 2, 3}, {5, 5, 5}}
Output: 2
All the elements of the first row and all the elements of the third row are same.



Input: mat[][] = {{1, 2}, {4, 2}}
Output: 0

Approach: Set count = 0 and start traversing the matrix row by row and for a particular row add every element of the row in a set and check if size(set) = 1, if yes then update count = count + 1.
After all the rows have been traversed, print the value of count.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach 
#include <bits/stdc++.h>
  
using namespace std;
  
// Function to return the count of all identical rows 
int countIdenticalRows(vector< vector <int> > mat) 
    int count = 0; 
  
    for (int i = 0; i < mat.size(); i++) 
    
  
        // HashSet for current row 
        set<int> hs; 
  
        // Traverse the row 
        for (int j = 0; j < mat[i].size(); j++) 
        
  
            // Add all the values of the row in HashSet 
            hs.insert(mat[i][j]); 
        
  
        // Check if size of HashSet = 1 
        if (hs.size() == 1) 
            count++; 
    
    return count; 
}
  
// Driver code
int main()
{
    vector< vector <int> > mat = {{ 1, 1, 1 }, 
                                { 1, 2, 3 }, 
                                { 5, 5, 5 }}; 
                          
    cout << countIdenticalRows(mat);
    return 0;
}
  
// This code is contributed by Rituraj Jain 

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.HashSet;
  
class GFG {
  
    // Function to return the count of all identical rows
    public static int countIdenticalRows(int mat[][])
    {
  
        int count = 0;
  
        for (int i = 0; i < mat.length; i++) {
  
            // HashSet for current row
            HashSet<Integer> hs = new HashSet<>();
  
            // Traverse the row
            for (int j = 0; j < mat[i].length; j++) {
  
                // Add all the values of the row in HashSet
                hs.add(mat[i][j]);
            }
  
            // Check if size of HashSet = 1
            if (hs.size() == 1)
                count++;
        }
  
        return count;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int mat[][] = { { 1, 1, 1 },
                        { 1, 2, 3 },
                        { 5, 5, 5 } };
        System.out.print(countIdenticalRows(mat));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

#Function to return the count of all identical rows
def countIdenticalRows(mat):
    count = 0
  
    for i in range(len(mat)):
  
        #HashSet for current row
        hs=dict()
  
        #Traverse the row
        for j in range(len(mat[i])):
  
            #Add all the values of the row in HashSet
            hs[mat[i][j]]=1
          
  
        #Check if size of HashSet = 1
        if (len(hs)== 1):
            count+=1
      
  
    return count
  
  
#Driver code
  
mat= [ [ 1, 1, 1 ],
                [ 1, 2, 3 ],
                [ 5, 5, 5 ] ]
print(countIdenticalRows(mat))
  
#This code is contributed by Mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of
// the above approach
using System;
using System.Collections.Generic; 
class GFG 
{
  
    // Function to return the count
    // of all identical rows
    public static int countIdenticalRows(int [,]mat)
    {
        int count = 0;
  
        for (int i = 0; 
                 i < mat.GetLength(0); i++)
        {
  
            // HashSet for current row
            HashSet<int> hs = new HashSet<int>();
  
            // Traverse the row
            for (int j = 0; 
                     j < mat.GetLength(0); j++) 
            {
  
                // Add all the values
                // of the row in HashSet
                hs.Add(mat[i, j]);
            }
  
            // Check if size of HashSet = 1
            if (hs.Count == 1)
                count++;
        }
        return count;
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        int [,]mat = {{ 1, 1, 1 },
                      { 1, 2, 3 },
                      { 5, 5, 5 }};
        Console.WriteLine(countIdenticalRows(mat));
    }
}
  
// This code is contributed by Princi Singh

chevron_right


Output:

2

Memory efficient approach: Set count = 0 and start traversing the matrix row by row and for a particular row save the first element of the row in a variable first and compare all the other elements with first. If all the other elements of the row are equal to the first element then update count = count + 1. When all the rows have been traversed, print the count.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
  
using namespace std;
  
    // Function to return the count of all identical rows 
    int countIdenticalRows(int mat[3][3],int r,int c) 
    
        int count = 0; 
        for (int i = 0; i < r; i++) 
        
  
            // First element of current row 
            int first = mat[i][0]; 
            bool allSame = true
  
            // Compare every element of the current row 
            // with the first element of the row 
              
            for (int j = 1; j < c; j++) 
            
  
                // If any element is different 
                if (mat[i][j] != first) 
                
                    allSame = false
                    break
                
            
  
            // If all the elements of the 
            // current row were same 
            if (allSame) 
                count++; 
        
        return count; 
    
  
    // Driver code
    int main()
    {
        //int mat[3][3] ;
        int mat[][3] = { { 1, 1, 2 }, 
                        { 2, 2, 2 }, 
                        { 5, 5, 2 } }; 
                              
        int row_length = sizeof(mat)/sizeof(mat[0]) ;
        int col_length = sizeof(mat[0])/sizeof(int) ;
          
        cout << countIdenticalRows(mat, row_length,col_length) << endl; 
    return 0;
    }
      
// This code is contributed by aishwarya.27 

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function to return the count of all identical rows
    public static int countIdenticalRows(int mat[][])
    {
  
        int count = 0;
  
        for (int i = 0; i < mat.length; i++) {
  
            // First element of current row
            int first = mat[i][0];
            boolean allSame = true;
  
            // Compare every element of the current row
            // with the first element of the row
            for (int j = 1; j < mat[i].length; j++) {
  
                // If any element is different
                if (mat[i][j] != first) {
                    allSame = false;
                    break;
                }
            }
  
            // If all the elements of the
            // current row were same
            if (allSame)
                count++;
        }
  
        return count;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int mat[][] = { { 1, 1, 2 },
                        { 2, 2, 2 },
                        { 5, 5, 2 } };
        System.out.print(countIdenticalRows(mat));
    }
}

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
# Function to return the count of 
# all identical rows
def countIdenticalRows(mat):
  
    count = 0
  
    for i in range(len(mat)):
  
        # First element of current row
        first = mat[i][0]
        allSame = True
  
        # Compare every element of the current
        # row with the first element of the row
        for j in range(1, len(mat[i])):
  
            # If any element is different
            if (mat[i][j] != first):
                allSame = False
                break
  
        # If all the elements of the
        # current row were same
        if (allSame):
            count += 1
  
    return count
  
# Driver code
if __name__ == "__main__":
      
    mat = [[ 1, 1, 2 ],
           [2, 2, 2 ],
           [5, 5, 2 ]]
    print(countIdenticalRows(mat))
  
# This code is contributed by ita_c

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
  
using System;
  
class GFG { 
  
    // Function to return the count of all identical rows 
    public static int countIdenticalRows(int [,]mat) 
    
  
        int count = 0; 
  
        for (int i = 0; i < mat.GetLength(0); i++) { 
  
            // First element of current row 
            int first = mat[i,0]; 
            bool allSame = true
  
            // Compare every element of the current row 
            // with the first element of the row 
            for (int j = 1; j < mat.GetLength(1); j++) { 
  
                // If any element is different 
                if (mat[i,j] != first) { 
                    allSame = false
                    break
                
            
  
            // If all the elements of the 
            // current row were same 
            if (allSame) 
                count++; 
        
  
        return count; 
    
  
    // Driver code 
    public static void Main() 
    
        int [,]mat = { { 1, 1, 2 }, 
                        { 2, 2, 2 }, 
                        { 5, 5, 2 } }; 
                          
        Console.Write(countIdenticalRows(mat)); 
    
    // This code is contributed by Ryuga

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function to return the count of
// all identical rows
function countIdenticalRows(&$mat)
{
    $count = 0;
  
    for ($i = 0; $i < sizeof($mat); $i++) 
    {
  
        // First element of current row
        $first = $mat[$i][0];
        $allSame = true;
  
        // Compare every element of the current 
        // row with the first element of the row
        for ($j = 1; $j < sizeof($mat[$i]); $j++) 
        {
  
            // If any element is different
            if ($mat[$i][$j] != $first
            {
                $allSame = false;
                break;
            }
        }
  
        // If all the elements of the
        // current row were same
        if ($allSame)
            $count++;
    }
  
    return $count;
}
  
// Driver code
$mat = array(array(1, 1, 2),
             array(2, 2, 2),
             array(5, 5, 2));
               
echo(countIdenticalRows($mat));
  
// This code is contributed by Shivi_Aggarwal
?>

chevron_right


Output:

1


My Personal Notes arrow_drop_up

Just another competitive programmer and hard worker

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.