Count pairs with given sum
Given an array of integers, and a number ‘sum’, find the number of pairs of integers in the array whose sum is equal to ‘sum’.
Examples:
Input : arr[] = {1, 5, 7, -1}, sum = 6 Output : 2 Pairs with sum 6 are (1, 5) and (7, -1) Input : arr[] = {1, 5, 7, -1, 5}, sum = 6 Output : 3 Pairs with sum 6 are (1, 5), (7, -1) & (1, 5) Input : arr[] = {1, 1, 1, 1}, sum = 2 Output : 6 There are 3! pairs with sum 2. Input : arr[] = {10, 12, 10, 15, -1, 7, 6, 5, 4, 2, 1, 1, 1}, sum = 11 Output : 9
Expected time complexity O(n)
A simple solution is be traverse each element and check if there’s another number in the array which can be added to it to give sum.
C++
// C++ implementation of simple method to find count of // pairs with given sum. #include <bits/stdc++.h> using namespace std; // Returns number of pairs in arr[0..n-1] with sum equal // to 'sum' int getPairsCount( int arr[], int n, int sum) { int count = 0; // Initialize result // Consider all possible pairs and check their sums for ( int i=0; i<n; i++) for ( int j=i+1; j<n; j++) if (arr[i]+arr[j] == sum) count++; return count; } // Driver function to test the above function int main() { int arr[] = {1, 5, 7, -1, 5} ; int n = sizeof (arr)/ sizeof (arr[0]); int sum = 6; cout << "Count of pairs is " << getPairsCount(arr, n, sum); return 0; } |
chevron_right
filter_none
Java
// Java implementation of simple method to find count of // pairs with given sum. public class find { public static void main(String args[]) { int [] arr = { 1 , 5 , 7 , - 1 , 5 }; int sum = 6 ; getPairsCount(arr, sum); } // Prints number of pairs in arr[0..n-1] with sum equal // to 'sum' public static void getPairsCount( int [] arr, int sum) { int count = 0 ; // Initialize result // Consider all possible pairs and check their sums for ( int i = 0 ; i < arr.length; i++) for ( int j = i + 1 ; j < arr.length; j++) if ((arr[i] + arr[j]) == sum) count++; System.out.printf( "Count of pairs is %d" ,count); } } // This program is contributed by Jyotsna |
chevron_right
filter_none
Python3
# Python3 implementation of simple method # to find count of pairs with given sum. # Returns number of pairs in arr[0..n-1] # with sum equal to 'sum' def getPairsCount(arr, n, sum ): count = 0 # Initialize result # Consider all possible pairs # and check their sums for i in range ( 0 , n): for j in range (i + 1 , n): if arr[i] + arr[j] = = sum : count + = 1 return count # Driver function arr = [ 1 , 5 , 7 , - 1 , 5 ] n = len (arr) sum = 6 print ( "Count of pairs is" , getPairsCount(arr, n, sum )) # This code is contributed by Smitha Dinesh Semwal |
chevron_right
filter_none
C#
// C# implementation of simple // method to find count of // pairs with given sum. using System; class GFG { public static void getPairsCount( int [] arr, int sum) { int count = 0; // Initialize result // Consider all possible pairs // and check their sums for ( int i = 0; i < arr.Length; i++) for ( int j = i + 1; j < arr.Length; j++) if ((arr[i] + arr[j]) == sum) count++; Console.WriteLine( "Count of pairs is " + count); } // Driver Code static public void Main () { int [] arr = { 1, 5, 7, -1, 5 }; int sum = 6; getPairsCount(arr, sum); } } // This code is contributed // by Sach_Code |
chevron_right
filter_none
PHP
<?php // PHP implementation of simple // method to find count of // pairs with given sum. // Returns number of pairs in // arr[0..n-1] with sum equal // to 'sum' function getPairsCount( $arr , $n , $sum ) { // Initialize result $count = 0; // Consider all possible pairs // and check their sums for ( $i = 0; $i < $n ; $i ++) for ( $j = $i + 1; $j < $n ; $j ++) if ( $arr [ $i ] + $arr [ $j ] == $sum ) $count ++; return $count ; } // Driver Code $arr = array (1, 5, 7, -1, 5) ; $n = sizeof( $arr ); $sum = 6; echo "Count of pairs is " , getPairsCount( $arr , $n , $sum ); // This code is contributed by nitin mittal. ?> |
chevron_right
filter_none
Output :
Count of pairs is 3
Time Complexity : O(n2)
Auxiliary Space : O(1)
A better solution is possible in O(n) time.
Below is the Algorithm.
- Create a map to store frequency of each number in the array. (Single traversal is required)
- In the next traversal, for every element check if it can be combined with any other element (other than itself!) to give the desired sum. Increment the counter accordingly.
- After completion of second traversal, we’d have twice the required value stored in counter because every pair is counted two times. Hence divide count by 2 and return.
Below is the implementation of above idea :
C++
// C++ implementation of simple method to find count of // pairs with given sum. #include <bits/stdc++.h> using namespace std; // Returns number of pairs in arr[0..n-1] with sum equal // to 'sum' int getPairsCount( int arr[], int n, int sum) { unordered_map< int , int > m; // Store counts of all elements in map m for ( int i=0; i<n; i++) m[arr[i]]++; int twice_count = 0; // iterate through each element and increment the // count (Notice that every pair is counted twice) for ( int i=0; i<n; i++) { twice_count += m[sum-arr[i]]; // if (arr[i], arr[i]) pair satisfies the condition, // then we need to ensure that the count is // decreased by one such that the (arr[i], arr[i]) // pair is not considered if (sum-arr[i] == arr[i]) twice_count--; } // return the half of twice_count return twice_count/2; } // Driver function to test the above function int main() { int arr[] = {1, 5, 7, -1, 5} ; int n = sizeof (arr)/ sizeof (arr[0]); int sum = 6; cout << "Count of pairs is " << getPairsCount(arr, n, sum); return 0; } |
chevron_right
filter_none
Java
/* Java implementation of simple method to find count of pairs with given sum*/ import java.util.HashMap; class Test { static int arr[] = new int []{ 1 , 5 , 7 , - 1 , 5 } ; // Returns number of pairs in arr[0..n-1] with sum equal // to 'sum' static int getPairsCount( int n, int sum) { HashMap<Integer, Integer> hm = new HashMap<>(); // Store counts of all elements in map hm for ( int i= 0 ; i<n; i++){ // initializing value to 0, if key not found if (!hm.containsKey(arr[i])) hm.put(arr[i], 0 ); hm.put(arr[i], hm.get(arr[i])+ 1 ); } int twice_count = 0 ; // iterate through each element and increment the // count (Notice that every pair is counted twice) for ( int i= 0 ; i<n; i++) { if (hm.get(sum-arr[i]) != null ) twice_count += hm.get(sum-arr[i]); // if (arr[i], arr[i]) pair satisfies the condition, // then we need to ensure that the count is // decreased by one such that the (arr[i], arr[i]) // pair is not considered if (sum-arr[i] == arr[i]) twice_count--; } // return the half of twice_count return twice_count/ 2 ; } // Driver method to test the above function public static void main(String[] args) { int sum = 6 ; System.out.println( "Count of pairs is " + getPairsCount(arr.length,sum)); } } // This code is contributed by Gaurav Miglani |
chevron_right
filter_none
Python3
# Python 3 implementation of simple method # to find count of pairs with given sum. import sys # Returns number of pairs in arr[0..n-1] # with sum equal to 'sum' def getPairsCount(arr, n, sum ): m = [ 0 ] * 1000 # Store counts of all elements in map m for i in range ( 0 , n): m[arr[i]] m[arr[i]] + = 1 twice_count = 0 # Iterate through each element and increment # the count (Notice that every pair is # counted twice) for i in range ( 0 , n): twice_count + = m[ sum - arr[i]] # if (arr[i], arr[i]) pair satisfies the # condition, then we need to ensure that # the count is decreased by one such # that the (arr[i], arr[i]) pair is not # considered if ( sum - arr[i] = = arr[i]): twice_count - = 1 # return the half of twice_count return int (twice_count / 2 ) # Driver function arr = [ 1 , 5 , 7 , - 1 , 5 ] n = len (arr) sum = 6 print ( "Count of pairs is" , getPairsCount(arr, n, sum )) # This code is contributed by # Smitha Dinesh Semwal |
chevron_right
filter_none
C#
// C# implementation of simple method to // find count of pairs with given sum using System; using System.Collections.Generic; class GFG { public static int [] arr = new int []{1, 5, 7, -1, 5}; // Returns number of pairs in arr[0..n-1] // with sum equal to 'sum' public static int getPairsCount( int n, int sum) { Dictionary< int , int > hm = new Dictionary< int , int >(); // Store counts of all elements // in map hm for ( int i = 0; i < n; i++) { // initializing value to 0, // if key not found if (!hm.ContainsKey(arr[i])) { hm[arr[i]] = 0; } hm[arr[i]] = hm[arr[i]] + 1; } int twice_count = 0; // iterate through each element and // increment the count (Notice that // every pair is counted twice) for ( int i = 0; i < n; i++) { if (hm[sum - arr[i]] != null ) { twice_count += hm[sum - arr[i]]; } // if (arr[i], arr[i]) pair satisfies // the condition, then we need to ensure // that the count is decreased by one // such that the (arr[i], arr[i]) // pair is not considered if (sum - arr[i] == arr[i]) { twice_count--; } } // return the half of twice_count return twice_count / 2; } // Driver Code public static void Main( string [] args) { int sum = 6; Console.WriteLine( "Count of pairs is " + getPairsCount(arr.Length, sum)); } } // This code is contributed by Shrikant13 |
chevron_right
filter_none
Output :
Count of pairs is 3
This article is contributed by Ashutosh Kumar. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Recommended Posts:
- Count pairs with Odd XOR
- Count all pairs with given XOR
- Count of unique pairs (arr[i], arr[j]) such that i < j
- Count pairs in an array such that LCM(arr[i], arr[j]) > min(arr[i],arr[j])
- Count passing car pairs
- Count of pairs (x, y) in an array such that x < y
- Count pairs in a sorted array whose sum is less than x
- Count pairs from two sorted matrices with given sum
- Count pairs with Bitwise OR as Even number
- Count pairs in an array that hold i*arr[i] > j*arr[j]
- Count pairs in an array such that frequency of one is at least value of other
- Count divisible pairs in an array
- Count pairs in array whose sum is divisible by 4
- Count pairs with Bitwise XOR as EVEN number
- Count pairs in an array that hold i+j= arr[i]+arr[j]