Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count pairs with given sum | Set 2

  • Difficulty Level : Medium
  • Last Updated : 19 Mar, 2021

Given an array arr[] and an integer sum, the task is to find the number of pairs of integers in the array whose sum is equal to sum.
Examples: 
 

Input: arr[] = {1, 5, 7, -1}, sum = 6 
Output:
Pairs with sum 6 are (1, 5) and (7, -1)
Input: arr[] = {1, 5, 7, -1, 5}, sum = 6 
Output:
Pairs with sum 6 are (1, 5), (7, -1) & (1, 5) 
Input: arr[] = {1, 1, 1, 1}, sum = 2 
Output:
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Approach: Two Different methods have already been discussed here. Here, a method based on sorting will be discussed. 
 

  1. Sort the array and take two pointers i and j, one pointer pointing to the start of the array i.e. i = 0 and another pointer pointing to the end of the array i.e. j = n – 1.
    • Greater than the sum then decrement j.
    • Lesser than the sum then increment i.
    • Equals to the sum then count such pairs.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of pairs
// from arr[] with the given sum
int pairs_count(int arr[], int n, int sum)
{
    // To store the count of pairs
    int ans = 0;
 
    // Sort the given array
    sort(arr, arr + n);
 
    // Take two pointers
    int i = 0, j = n - 1;
 
    while (i < j) {
        // If sum is greater
        if (arr[i] + arr[j] < sum)
            i++;
 
        // If sum is lesser
        else if (arr[i] + arr[j] > sum)
            j--;
 
        // If sum is equal
        else {
            // Find the frequency of arr[i]
            int x = arr[i], xx = i;
            while (i < j and arr[i] == x)
                i++;
 
            // Find the frequency of arr[j]
            int y = arr[j], yy = j;
            while (j >= i and arr[j] == y)
                j--;
 
            // If arr[i] and arr[j] are same
            // then remove the extra number counted
            if (x == y) {
                int temp = i - xx + yy - j - 1;
                ans += (temp * (temp + 1)) / 2;
            }
            else
                ans += (i - xx) * (yy - j);
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 5, 7, 5, -1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int sum = 6;
 
    cout << pairs_count(arr, n, sum);
 
    return 0;
}

Java




//Java implementation of the approach
import java.util.Arrays;
import java.io.*;
 
class GFG
{
     
// Function to return the count of pairs
// from arr[] with the given sum
static int pairs_count(int arr[], int n, int sum)
{
    // To store the count of pairs
    int ans = 0;
 
    // Sort the given array
    Arrays.sort(arr);
 
    // Take two pointers
    int i = 0, j = n - 1;
 
    while (i < j)
    {
         
        // If sum is greater
        if (arr[i] + arr[j] < sum)
            i++;
 
        // If sum is lesser
        else if (arr[i] + arr[j] > sum)
            j--;
 
        // If sum is equal
        else
        {
             
            // Find the frequency of arr[i]
            int x = arr[i], xx = i;
            while ((i < j ) && (arr[i] == x))
                i++;
 
            // Find the frequency of arr[j]
            int y = arr[j], yy = j;
            while ((j >= i )&& (arr[j] == y))
                j--;
 
            // If arr[i] and arr[j] are same
            // then remove the extra number counted
            if (x == y)
            {
                int temp = i - xx + yy - j - 1;
                ans += (temp * (temp + 1)) / 2;
            }
            else
                ans += (i - xx) * (yy - j);
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void main (String[] args)
{
    int arr[] = { 1, 5, 7, 5, -1 };
    int n = arr.length;
    int sum = 6;
     
    System.out.println (pairs_count(arr, n, sum));
}
}
 
// The code is contributed by ajit..

Python3




# Python3 implementation of the approach
 
# Function to return the count of pairs
# from arr with the given sum
def pairs_count(arr, n, sum):
     
    # To store the count of pairs
    ans = 0
 
    # Sort the given array
    arr = sorted(arr)
 
    # Take two pointers
    i, j = 0, n - 1
 
    while (i < j):
         
        # If sum is greater
        if (arr[i] + arr[j] < sum):
            i += 1
 
        # If sum is lesser
        elif (arr[i] + arr[j] > sum):
            j -= 1
             
        # If sum is equal
        else:
             
            # Find the frequency of arr[i]
            x = arr[i]
            xx = i
            while (i < j and arr[i] == x):
                i += 1
 
            # Find the frequency of arr[j]
            y = arr[j]
            yy = j
            while (j >= i and arr[j] == y):
                j -= 1
 
            # If arr[i] and arr[j] are same
            # then remove the extra number counted
            if (x == y):
                temp = i - xx + yy - j - 1
                ans += (temp * (temp + 1)) // 2
            else:
                ans += (i - xx) * (yy - j)
 
    # Return the required answer
    return ans
 
# Driver code
arr = [1, 5, 7, 5, -1]
n = len(arr)
sum = 6
 
print(pairs_count(arr, n, sum))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
     
class GFG
{
     
// Function to return the count of pairs
// from arr[] with the given sum
static int pairs_count(int []arr,
                       int n, int sum)
{
    // To store the count of pairs
    int ans = 0;
 
    // Sort the given array
    Array.Sort(arr);
 
    // Take two pointers
    int i = 0, j = n - 1;
 
    while (i < j)
    {
         
        // If sum is greater
        if (arr[i] + arr[j] < sum)
            i++;
 
        // If sum is lesser
        else if (arr[i] + arr[j] > sum)
            j--;
 
        // If sum is equal
        else
        {
             
            // Find the frequency of arr[i]
            int x = arr[i], xx = i;
            while ((i < j) && (arr[i] == x))
                i++;
 
            // Find the frequency of arr[j]
            int y = arr[j], yy = j;
            while ((j >= i) && (arr[j] == y))
                j--;
 
            // If arr[i] and arr[j] are same
            // then remove the extra number counted
            if (x == y)
            {
                int temp = i - xx + yy - j - 1;
                ans += (temp * (temp + 1)) / 2;
            }
            else
                ans += (i - xx) * (yy - j);
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
public static void Main (String[] args)
{
    int []arr = { 1, 5, 7, 5, -1 };
    int n = arr.Length;
    int sum = 6;
     
    Console.WriteLine (pairs_count(arr, n, sum));
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count of pairs
// from arr[] with the given sum
function pairs_count(arr, n, sum)
{
    // To store the count of pairs
    let ans = 0;
 
    // Sort the given array
    arr.sort();
 
    // Take two pointers
    let i = 0, j = n - 1;
 
    while (i < j) {
        // If sum is greater
        if (arr[i] + arr[j] < sum)
            i++;
 
        // If sum is lesser
        else if (arr[i] + arr[j] > sum)
            j--;
 
        // If sum is equal
        else {
            // Find the frequency of arr[i]
            let x = arr[i], xx = i;
            while (i < j && arr[i] == x)
                i++;
 
            // Find the frequency of arr[j]
            let y = arr[j], yy = j;
            while (j >= i && arr[j] == y)
                j--;
 
            // If arr[i] and arr[j] are same
            // then remove the extra number counted
            if (x == y) {
                let temp = i - xx + yy - j - 1;
                ans += (temp * (temp + 1)) / 2;
            }
            else
                ans += (i - xx) * (yy - j);
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
    let arr = [ 1, 5, 7, 5, -1 ];
    let n = arr.length;
    let sum = 6;
 
    document.write(pairs_count(arr, n, sum));
 
// This code is contributed by Mayank Tyagi
 
</script>
Output: 
3

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!