Skip to content
Related Articles

Related Articles

Count pairs from two arrays with difference exceeding K
  • Last Updated : 11 Nov, 2020

Given two integer arrays arr[] and brr[] consisting of distinct elements of size N and M respectively and an integer K, the task is to find the count of pairs(arr[i], brr[j]) such that (brr[j] – arr[i]) > K.

Examples:

Input: arr[] = {5, 9, 1, 8}, brr[] {10, 12, 7, 4, 2, 3}, K = 3 
Output:
Explanation: 
Possible pairs that satisfy the given conditions are: { (5, 10), (5, 12), (1, 10), (1, 12), (1, 7), (8, 12) }. 
Therefore, the required output is 6.

Input: arr[] = {2, 10}, brr[] = {5, 7}, K = 2 
Output:
Explanation: 
Possible pairs that satisfy the given conditions are: { (2, 5), (2, 7) }. 
Therefore, the required output is 2.

Naive approach: The simplest approach to solve this problem is to traverse the array and generate all possible pairs of the given array and for each pair, check if (brr[j] – arr[i]) > K or not. If found to be true then increment the counter. Finally, print the value of the counter.



Time Complexity: O(N × M)
Auxiliary Space: O(1)

Efficient approach: To optimize the above approach the idea is to first sort the array and then use two pointer techniques. Follow the steps below to solve the problem:

  • Initialize a variable, say cntPairs to store the count of pairs that satisfy the given conditions.
  • Sort the given array.
  • Initialize two variables, say i = 0 and j = 0 to store the index of left and right pointers respectively.
  • Traverse both the array and check if (brr[j] – arr[i]) > K or not. If found to be true then update the value of cntPairs += (M – j) and increment the value of i pointer variable.
  • Otherwise, increment the value of j pointer variable.
  • Finally, print the value of cntPrint.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count pairs that satisfy
// the given conditions
int count_pairs(int arr[], int brr[],
                int N, int M, int K)
{
    // Stores index of
    // the left pointer.
    int i = 0;
 
    // Stores index of
    // the right pointer
    int j = 0;
 
    // Stores count of total pairs
    // that satisfy the conditions
    int cntPairs = 0;
 
    // Sort arr[] array
    sort(arr, arr + N);
 
    // Sort brr[] array
    sort(brr, brr + M);
 
    // Traverse both the array
    // and count then pairs
    while (i < N && j < M) {
 
        // If the value of
        // (brr[j] - arr[i]) exceeds K
        if (brr[j] - arr[i] > K) {
 
            // Update cntPairs
            cntPairs += (M - j);
 
            // Update
            i++;
        }
        else {
 
            // Update j
            j++;
        }
    }
 
    return cntPairs;
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 9, 1, 8 };
    int brr[] = { 10, 12, 7, 4, 2, 3 };
    int K = 3;
    int N = sizeof(arr) / sizeof(arr[0]);
    int M = sizeof(brr) / sizeof(brr[0]);
    cout << count_pairs(arr, brr, N, M, K);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
   
// Function to count pairs that satisfy
// the given conditions
static int count_pairs(int arr[], int brr[],
                       int N, int M, int K)
{
     
    // Stores index of
    // the left pointer.
    int i = 0;
 
    // Stores index of
    // the right pointer
    int j = 0;
 
    // Stores count of total pairs
    // that satisfy the conditions
    int cntPairs = 0;
 
    // Sort arr[] array
    Arrays.sort(arr);
 
    // Sort brr[] array
    Arrays.sort(brr);
 
    // Traverse both the array
    // and count then pairs
    while (i < N && j < M)
    {
         
        // If the value of
        // (brr[j] - arr[i]) exceeds K
        if (brr[j] - arr[i] > K)
        {
             
            // Update cntPairs
            cntPairs += (M - j);
             
            // Update
            i++;
        }
        else
        {
             
            // Update j
            j++;
        }
    }
    return cntPairs;
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = { 5, 9, 1, 8 };
    int brr[] = { 10, 12, 7, 4, 2, 3 };
    int K = 3;
     
    int N = arr.length;
    int M = brr.length;
     
    System.out.println(count_pairs(arr, brr, N, M, K));
}
}
 
// This code is contributed by SURENDRA_GANGWAR

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
 
# Function to count pairs that satisfy
# the given conditions
def count_pairs(arr, brr, N, M, K):
     
    # Stores index of
    # the left pointer.
    i = 0
 
    # Stores index of
    # the right pointer
    j = 0
 
    # Stores count of total pairs
    # that satisfy the conditions
    cntPairs = 0
 
    # Sort arr[] array
    arr = sorted(arr)
 
    # Sort brr[] array
    brr = sorted(brr)
 
    # Traverse both the array
    # and count then pairs
    while (i < N and j < M):
 
        # If the value of
        # (brr[j] - arr[i]) exceeds K
        if (brr[j] - arr[i] > K):
 
            # Update cntPairs
            cntPairs += (M - j)
 
            # Update
            i += 1
        else:
 
            # Update j
            j += 1
 
    return cntPairs
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 5, 9, 1, 8 ]
    brr = [ 10, 12, 7, 4, 2, 3 ]
    K = 3
     
    N = len(arr)
    M = len(brr)
     
    print(count_pairs(arr, brr, N, M, K))
 
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
class GFG{
     
// Function to count pairs
// that satisfy the given
// conditions
static int count_pairs(int[] arr, int[] brr,
                       int N, int M, int K)
{
  // Stores index of
  // the left pointer.
  int i = 0;
 
  // Stores index of
  // the right pointer
  int j = 0;
 
  // Stores count of total pairs
  // that satisfy the conditions
  int cntPairs = 0;
 
  // Sort arr[] array
  Array.Sort(arr);
 
  // Sort brr[] array
  Array.Sort(brr);
 
  // Traverse both the array
  // and count then pairs
  while (i < N && j < M)
  {
    // If the value of
    // (brr[j] - arr[i])
    // exceeds K
    if (brr[j] - arr[i] > K)
    {
      // Update cntPairs
      cntPairs += (M - j);
 
      // Update
      i++;
    }
    else
    {
      // Update j
      j++;
    }
  }
  return cntPairs;
}
     
// Driver code 
static void Main()
{
  int[] arr = {5, 9, 1, 8};
  int[] brr = {10, 12,
               7, 4, 2, 3};
  int K = 3;
  int N = arr.Length;
  int M = brr.Length;
  Console.WriteLine(
  count_pairs(arr, brr,
              N, M, K));
}
}
 
// This code is contributed by divyeshrabadiya07

chevron_right


Output: 

6








 

Time Complexity: O(N * log(N) + M * log(M)) 
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :