Given two integer arrays arr[] and brr[] consisting of distinct elements of size N and M respectively and an integer K, the task is to find the count of pairs(arr[i], brr[j]) such that (brr[j] – arr[i]) > K.
Examples:
Input: arr[] = {5, 9, 1, 8}, brr[] {10, 12, 7, 4, 2, 3}, K = 3
Output: 6
Explanation:
Possible pairs that satisfy the given conditions are: { (5, 10), (5, 12), (1, 10), (1, 12), (1, 7), (8, 12) }.
Therefore, the required output is 6.
Input: arr[] = {2, 10}, brr[] = {5, 7}, K = 2
Output: 2
Explanation:
Possible pairs that satisfy the given conditions are: { (2, 5), (2, 7) }.
Therefore, the required output is 2.
Naive approach: The simplest approach to solve this problem is to traverse the array and generate all possible pairs of the given array and for each pair, check if (brr[j] – arr[i]) > K or not. If found to be true then increment the counter. Finally, print the value of the counter.
Algorithm
Initialize a variable sum to zero.
Loop through each element of the input array:
a. If the current element is even (i.e., its value is divisible by 2 with no remainder), add it to the sum.
Return the value of sum.
C++
#include <iostream>
#include <vector>
using namespace std;
int main() {
vector< int > arr = {5, 9, 1, 8};
vector< int > brr = {10, 12, 7, 4, 2, 3};
int K = 3;
int count = 0;
for ( int i = 0; i < arr.size(); i++) {
for ( int j = 0; j < brr.size(); j++) {
if (brr[j] - arr[i] > K) {
count++;
}
}
}
cout << count << endl;
return 0;
}
|
Java
public class GFG {
public static void main(String[] args) {
int [] arr = { 5 , 9 , 1 , 8 };
int [] brr = { 10 , 12 , 7 , 4 , 2 , 3 };
int K = 3 ;
int count = 0 ;
for ( int i = 0 ; i < arr.length; i++) {
for ( int j = 0 ; j < brr.length; j++) {
if (brr[j] - arr[i] > K) {
count++;
}
}
}
System.out.println(count);
}
}
|
Python
arr = [ 5 , 9 , 1 , 8 ]
brr = [ 10 , 12 , 7 , 4 , 2 , 3 ]
K = 3
count = 0
for i in range ( len (arr)):
for j in range ( len (brr)):
if brr[j] - arr[i] > K:
count + = 1
print (count)
|
C#
using System;
public class GFG {
static public void Main() {
int [] arr = {5, 9, 1, 8};
int [] brr = {10, 12, 7, 4, 2, 3};
int K = 3;
int count = 0;
for ( int i = 0; i < arr.Length; i++) {
for ( int j = 0; j < brr.Length; j++) {
if (brr[j] - arr[i] > K) {
count++;
}
}
}
Console.WriteLine(count);
}
}
|
Javascript
function main() {
let arr = [5, 9, 1, 8];
let brr = [10, 12, 7, 4, 2, 3];
let K = 3;
let count = 0;
for (let i = 0; i < arr.length; i++) {
for (let j = 0; j < brr.length; j++) {
if (brr[j] - arr[i] > K) {
count++;
}
}
}
console.log(count);
}
main();
|
Time Complexity: O(N × M)
Auxiliary Space: O(1)
Efficient approach: To optimize the above approach the idea is to first sort the array and then use two pointer techniques. Follow the steps below to solve the problem:
- Initialize a variable, say cntPairs to store the count of pairs that satisfy the given conditions.
- Sort the given array.
- Initialize two variables, say i = 0 and j = 0 to store the index of left and right pointers respectively.
- Traverse both the array and check if (brr[j] – arr[i]) > K or not. If found to be true then update the value of cntPairs += (M – j) and increment the value of i pointer variable.
- Otherwise, increment the value of j pointer variable.
- Finally, print the value of cntPrint.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int count_pairs( int arr[], int brr[],
int N, int M, int K)
{
int i = 0;
int j = 0;
int cntPairs = 0;
sort(arr, arr + N);
sort(brr, brr + M);
while (i < N && j < M) {
if (brr[j] - arr[i] > K) {
cntPairs += (M - j);
i++;
}
else {
j++;
}
}
return cntPairs;
}
int main()
{
int arr[] = { 5, 9, 1, 8 };
int brr[] = { 10, 12, 7, 4, 2, 3 };
int K = 3;
int N = sizeof (arr) / sizeof (arr[0]);
int M = sizeof (brr) / sizeof (brr[0]);
cout << count_pairs(arr, brr, N, M, K);
return 0;
}
|
Java
import java.util.*;
class GFG{
static int count_pairs( int arr[], int brr[],
int N, int M, int K)
{
int i = 0 ;
int j = 0 ;
int cntPairs = 0 ;
Arrays.sort(arr);
Arrays.sort(brr);
while (i < N && j < M)
{
if (brr[j] - arr[i] > K)
{
cntPairs += (M - j);
i++;
}
else
{
j++;
}
}
return cntPairs;
}
public static void main(String args[])
{
int arr[] = { 5 , 9 , 1 , 8 };
int brr[] = { 10 , 12 , 7 , 4 , 2 , 3 };
int K = 3 ;
int N = arr.length;
int M = brr.length;
System.out.println(count_pairs(arr, brr, N, M, K));
}
}
|
Python3
def count_pairs(arr, brr, N, M, K):
i = 0
j = 0
cntPairs = 0
arr = sorted (arr)
brr = sorted (brr)
while (i < N and j < M):
if (brr[j] - arr[i] > K):
cntPairs + = (M - j)
i + = 1
else :
j + = 1
return cntPairs
if __name__ = = '__main__' :
arr = [ 5 , 9 , 1 , 8 ]
brr = [ 10 , 12 , 7 , 4 , 2 , 3 ]
K = 3
N = len (arr)
M = len (brr)
print (count_pairs(arr, brr, N, M, K))
|
C#
using System;
class GFG{
static int count_pairs( int [] arr, int [] brr,
int N, int M, int K)
{
int i = 0;
int j = 0;
int cntPairs = 0;
Array.Sort(arr);
Array.Sort(brr);
while (i < N && j < M)
{
if (brr[j] - arr[i] > K)
{
cntPairs += (M - j);
i++;
}
else
{
j++;
}
}
return cntPairs;
}
static void Main()
{
int [] arr = {5, 9, 1, 8};
int [] brr = {10, 12,
7, 4, 2, 3};
int K = 3;
int N = arr.Length;
int M = brr.Length;
Console.WriteLine(
count_pairs(arr, brr,
N, M, K));
}
}
|
Javascript
<script>
function count_pairs(arr, brr, N, M, K)
{
let i = 0;
let j = 0;
let cntPairs = 0;
(arr).sort( function (a,b){ return a-b;});
(brr).sort( function (a,b){ return a-b;});
while (i < N && j < M)
{
if (brr[j] - arr[i] > K)
{
cntPairs += (M - j);
i++;
}
else
{
j++;
}
}
return cntPairs;
}
let arr = [5, 9, 1, 8];
let brr = [ 10, 12, 7, 4, 2, 3];
let K = 3;
let N = arr.length;
let M = brr.length;
document.write(count_pairs(arr, brr, N, M, K));
</script>
|
Time Complexity: O(N * log(N) + M * log(M))
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
05 Jul, 2023
Like Article
Save Article