Given N, count all ‘a’ and ‘b’ that satisfy the condition a^3 + b^3 = N.
Examples:
Input : N = 9 Output : 2 1^3 + 2^3 = 9 2^3 + 1^3 = 9 Input : N = 28 Output : 2 1^3 + 3^3 = 28 3^3 + 1^3 = 28
Note:- (a, b) and (b, a) are to be considered as two different pairs.
Asked in : Adobe
Implementation: Travers numbers from 1 to cube root of N. a) Subtract cube of current number from N and check if their difference is a perfect cube or not. i) If perfect cube then increment count. 2- Return count.
Below is the implementation of above approach:
C++
// C++ program to count pairs whose sum // cubes is N #include<bits/stdc++.h> using namespace std; // Function to count the pairs satisfying // a ^ 3 + b ^ 3 = N int countPairs( int N) { int count = 0; // Check for each number 1 to cbrt(N) for ( int i = 1; i <= cbrt(N); i++) { // Store cube of a number int cb = i*i*i; // Subtract the cube from given N int diff = N - cb; // Check if the difference is also // a perfect cube int cbrtDiff = cbrt(diff); // If yes, then increment count if (cbrtDiff*cbrtDiff*cbrtDiff == diff) count++; } // Return count return count; } // Driver program int main() { // Loop to Count no. of pairs satisfying // a ^ 3 + b ^ 3 = i for N = 1 to 10 for ( int i = 1; i<= 10; i++) cout << "For n = " << i << ", " << countPairs(i) << " pair exists\n" ; return 0; } |
Java
// Java program to count pairs whose sum // cubes is N class Test { // method to count the pairs satisfying // a ^ 3 + b ^ 3 = N static int countPairs( int N) { int count = 0 ; // Check for each number 1 to cbrt(N) for ( int i = 1 ; i <= Math.cbrt(N); i++) { // Store cube of a number int cb = i*i*i; // Subtract the cube from given N int diff = N - cb; // Check if the difference is also // a perfect cube int cbrtDiff = ( int ) Math.cbrt(diff); // If yes, then increment count if (cbrtDiff*cbrtDiff*cbrtDiff == diff) count++; } // Return count return count; } // Driver method public static void main(String args[]) { // Loop to Count no. of pairs satisfying // a ^ 3 + b ^ 3 = i for N = 1 to 10 for ( int i = 1 ; i<= 10 ; i++) System.out.println( "For n = " + i + ", " + + countPairs(i) + " pair exists" ); } } |
Python 3
# Python 3 program to count pairs # whose sum cubes is N import math # Function to count the pairs # satisfying a ^ 3 + b ^ 3 = N def countPairs(N): count = 0 # Check for each number 1 # to cbrt(N) for i in range ( 1 , int (math. pow (N, 1 / 3 ) + 1 )): # Store cube of a number cb = i * i * i # Subtract the cube from given N diff = N - cb # Check if the difference is also # a perfect cube cbrtDiff = int (math. pow (diff, 1 / 3 )) # If yes, then increment count if (cbrtDiff * cbrtDiff * cbrtDiff = = diff): count + = 1 # Return count return count # Driver program # Loop to Count no. of pairs satisfying # a ^ 3 + b ^ 3 = i for N = 1 to 10 for i in range ( 1 , 11 ): print ( 'For n = ' , i, ', ' , countPairs(i), ' pair exists' ) # This code is contributed by Smitha. |
C#
// C# program to count pairs whose sum // cubes is N using System; class Test { // method to count the pairs satisfying // a ^ 3 + b ^ 3 = N static int countPairs( int N) { int count = 0; // Check for each number 1 to cbrt(N) for ( int i = 1; i <= Math.Pow(N,(1.0/3.0)); i++) { // Store cube of a number int cb = i*i*i; // Subtract the cube from given N int diff = N - cb; // Check if the difference is also // a perfect cube int cbrtDiff = ( int ) Math.Pow(diff,(1.0/3.0)); // If yes, then increment count if (cbrtDiff*cbrtDiff*cbrtDiff == diff) count++; } // Return count return count; } // Driver method public static void Main() { // Loop to Count no. of pairs satisfying // a ^ 3 + b ^ 3 = i for N = 1 to 10 for ( int i = 1; i<= 10; i++) Console.Write( "For n = " + i + ", " + + countPairs(i) + " pair exists" + "\n" ); } } |
PHP
<?php // PHP program to count pairs // whose sum cubes is N // Function to count the pairs // satisfying a ^ 3 + b ^ 3 = N function countPairs( $N ) { $count = 0; // Check for each number // 1 to cbrt(N) for ( $i = 1; $i <= (int)pow( $N , 1 / 3); $i ++) { // Store cube of a number $cb = $i * $i * $i ; // Subtract the cube from // given N $diff = ( $N - $cb ); // Check if the difference is // also a perfect cube $cbrtDiff = (int)pow( $diff , 1 / 3); // If yes, then increment count if ( $cbrtDiff * $cbrtDiff * $cbrtDiff == $diff ) $count ++; } // Return count return $count ; } // Driver Code // Loop to Count no. of pairs // satisfying a ^ 3 + b ^ 3 = i // for N = 1 to 10 for ( $i = 1; $i <= 10; $i ++) echo "For n = " , $i , ", " , countPairs( $i ) , " pair exists\n" ; // This code is contributed by jit_t ?> |
Output:
For n= 1, 1 pair exists For n= 2, 1 pair exists For n= 3, 0 pair exists For n= 4, 0 pair exists For n= 5, 0 pair exists For n= 6, 0 pair exists For n= 7, 0 pair exists For n= 8, 1 pair exists For n= 9, 2 pair exists For n= 10, 0 pair exists
Reference: https://www.careercup.com/question?id=5954491572551680
This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.