# Count of different ways to express N as the sum of 1, 3 and 4

Given N, count the number of ways to express N as sum of 1, 3 and 4.

**Examples:**

Input : N = 4 Output : 4 Explanation: 1+1+1+1 1+3 3+1 4 Input : N = 5 Output : 6 Explanation: 1 + 1 + 1 + 1 + 1 1 + 4 4 + 1 1 + 1 + 3 1 + 3 + 1 3 + 1 + 1

**Approach : ** Divide the problem into sub-problems for solving it. Let DP[n] be the be the number of ways to write N as the sum of 1, 3, and 4. Consider one possible solution with n = x1 + x2 + x3 + … xn. If the last number is 1, then sum of the remaining numbers is n-1. So the number that ends with 1 is equal to DP[n-1]. Taking other cases into account where the last number is 3 and 4. The final recurrence would be:

DP_{n}= DP_{n-1}+ DP_{n-3}+ DP_{n-4}

Base case :DP[0] = DP[1] = DP[2] = 1 and DP[3] = 2

## C++

`// CPP program to illustrate the number of ` `// ways to represent N as sum of 1, 3 and 4. ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// function to count the number of ` `// ways to represent n as sum of 1, 3 and 4 ` `int` `countWays(` `int` `n) ` `{ ` ` ` `int` `DP[n + 1]; ` ` ` ` ` `// base cases ` ` ` `DP[0] = DP[1] = DP[2] = 1; ` ` ` `DP[3] = 2; ` ` ` ` ` `// iterate for all values from 4 to n ` ` ` `for` `(` `int` `i = 4; i <= n; i++) ` ` ` `DP[i] = DP[i - 1] + DP[i - 3] + DP[i - 4]; ` ` ` ` ` `return` `DP[n]; ` `} ` ` ` `// driver code ` `int` `main() ` `{ ` ` ` `int` `n = 10; ` ` ` `cout << countWays(n); ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java program to illustrate ` `// the number of ways to represent ` `// N as sum of 1, 3 and 4. ` ` ` `class` `GFG { ` ` ` ` ` `// Function to count the ` ` ` `// number of ways to represent ` ` ` `// n as sum of 1, 3 and 4 ` ` ` `static` `int` `countWays(` `int` `n) ` ` ` `{ ` ` ` `int` `DP[] = ` `new` `int` `[n + ` `1` `]; ` ` ` ` ` `// base cases ` ` ` `DP[` `0` `] = DP[` `1` `] = DP[` `2` `] = ` `1` `; ` ` ` `DP[` `3` `] = ` `2` `; ` ` ` ` ` `// iterate for all values from 4 to n ` ` ` `for` `(` `int` `i = ` `4` `; i <= n; i++) ` ` ` `DP[i] = DP[i - ` `1` `] + DP[i - ` `3` `] ` ` ` `+ DP[i - ` `4` `]; ` ` ` ` ` `return` `DP[n]; ` ` ` `} ` ` ` ` ` `// driver code ` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{ ` ` ` `int` `n = ` `10` `; ` ` ` `System.out.println(countWays(n)); ` ` ` `} ` `} ` ` ` `// This code is contributed ` `// by prerna saini. ` |

*chevron_right*

*filter_none*

## Python3

`# Python program to illustrate the number of ` `# ways to represent N as sum of 1, 3 and 4. ` ` ` `# Function to count the number of ` `# ways to represent n as sum of 1, 3 and 4 ` `def` `countWays(n): ` ` ` ` ` `DP ` `=` `[` `0` `for` `i ` `in` `range` `(` `0` `, n ` `+` `1` `)] ` ` ` ` ` `# base cases ` ` ` `DP[` `0` `] ` `=` `DP[` `1` `] ` `=` `DP[` `2` `] ` `=` `1` ` ` `DP[` `3` `] ` `=` `2` ` ` ` ` `# Iterate for all values from 4 to n ` ` ` `for` `i ` `in` `range` `(` `4` `, n ` `+` `1` `): ` ` ` `DP[i] ` `=` `DP[i ` `-` `1` `] ` `+` `DP[i ` `-` `3` `] ` `+` `DP[i ` `-` `4` `] ` ` ` ` ` `return` `DP[n] ` ` ` ` ` `# Driver code ` `n ` `=` `10` `print` `(countWays(n)) ` ` ` `# This code is contributed by Gitanjali. ` |

*chevron_right*

*filter_none*

## C#

`// C# program to illustrate ` `// the number of ways to represent ` `// N as sum of 1, 3 and 4. ` `using` `System; ` ` ` `class` `GFG { ` ` ` ` ` `// Function to count the ` ` ` `// number of ways to represent ` ` ` `// n as sum of 1, 3 and 4 ` ` ` `static` `int` `countWays(` `int` `n) ` ` ` `{ ` ` ` `int` `[]DP = ` `new` `int` `[n + 1]; ` ` ` ` ` `// base cases ` ` ` `DP[0] = DP[1] = DP[2] = 1; ` ` ` `DP[3] = 2; ` ` ` ` ` `// iterate for all values from 4 to n ` ` ` `for` `(` `int` `i = 4; i <= n; i++) ` ` ` `DP[i] = DP[i - 1] + DP[i - 3] ` ` ` `+ DP[i - 4]; ` ` ` ` ` `return` `DP[n]; ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` `int` `n = 10; ` ` ` `Console.WriteLine(countWays(n)); ` ` ` `} ` `} ` ` ` `// This code is contributed ` `// by vt_m. ` |

*chevron_right*

*filter_none*

## PHP

`<?php ` `// PHP program to illustrate ` `// the number of ways to ` `// represent N as sum of ` `// 1, 3 and 4. ` ` ` `// function to count the ` `// number of ways to ` `// represent n as sum of ` `// 1, 3 and 4 ` `function` `countWays(` `$n` `) ` `{ ` ` ` `$DP` `= ` `array` `(); ` ` ` ` ` `// base cases ` ` ` `$DP` `[0] = ` `$DP` `[1] = ` `$DP` `[2] = 1; ` ` ` `$DP` `[3] = 2; ` ` ` ` ` `// iterate for all ` ` ` `// values from 4 to n ` ` ` `for` `(` `$i` `= 4; ` `$i` `<= ` `$n` `; ` `$i` `++) ` ` ` `$DP` `[` `$i` `] = ` `$DP` `[` `$i` `- 1] + ` ` ` `$DP` `[` `$i` `- 3] + ` ` ` `$DP` `[` `$i` `- 4]; ` ` ` ` ` `return` `$DP` `[` `$n` `]; ` `} ` ` ` `// Driver Code ` `$n` `= 10; ` `echo` `countWays(` `$n` `); ` ` ` `// This code is contributed ` `// by Sam007 ` `?> ` |

*chevron_right*

*filter_none*

**Output:**

64

**Time Complexity :** O(n)

**Auxiliary Space :** O(n)

## Recommended Posts:

- Count ways to express 'n' as sum of odd integers
- Count ways to express even number ‘n’ as sum of even integers
- Count number of ways to get Odd Sum
- Count possible ways to construct buildings
- Count ways to reach the n'th stair
- Count ways to reach the nth stair using step 1, 2 or 3
- Count the number of ways to traverse a Matrix
- Count ways to reach a score using 1 and 2 with no consecutive 2s
- Count ways to distribute m items among n people
- Count ways to increase LCS length of two strings by one
- Count number of ways to jump to reach end
- Count number of ways to cover a distance
- Count number of ways to partition a set into k subsets
- Count number of ways to arrange first N numbers
- Count ways to build street under given constraints

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.