Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count of different ways to express N as the sum of 1, 3 and 4

  • Difficulty Level : Easy

Given N, count the number of ways to express N as sum of 1, 3 and 4.

Examples: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input :  N = 4
Output : 4 
Explanation: 1+1+1+1 
             1+3
             3+1 
             4 

Input : N = 5 
Output : 6
Explanation: 1 + 1 + 1 + 1 + 1
             1 + 4
             4 + 1
             1 + 1 + 3
             1 + 3 + 1
             3 + 1 + 1

Approach : Divide the problem into sub-problems for solving it. Let DP[n] be the be the number of ways to write N as the sum of 1, 3, and 4. Consider one possible solution with n = x1 + x2 + x3 + … xn. If the last number is 1, then sum of the remaining numbers is n-1. So the number that ends with 1 is equal to DP[n-1]. Taking other cases into account where the last number is 3 and 4. The final recurrence would be: 

DPn = DPn-1 + DPn-3 + DPn-4
Base case :
DP[0] = DP[1] = DP[2] = 1 and DP[3] = 2

C++




// C++ program to illustrate the number of
// ways to represent N as sum of 1, 3 and 4.
#include <bits/stdc++.h>
using namespace std;
 
// function to count the number of
// ways to represent n as sum of 1, 3 and 4
int countWays(int n)
{
    int DP[n + 1];
 
    // base cases
    DP[0] = DP[1] = DP[2] = 1;
    DP[3] = 2;
 
    // iterate for all values from 4 to n
    for (int i = 4; i <= n; i++)
        DP[i] = DP[i - 1] + DP[i - 3] + DP[i - 4];
     
    return DP[n];
}
 
// driver code
int main()
{
    int n = 10;
    cout << countWays(n);
    return 0;
}

Java




// Java program to illustrate
// the number of ways to represent
// N as sum of 1, 3 and 4.
 
class GFG {
 
    // Function to count the
    // number of ways to represent
    // n as sum of 1, 3 and 4
    static int countWays(int n)
    {
        int DP[] = new int[n + 1];
 
        // base cases
        DP[0] = DP[1] = DP[2] = 1;
        DP[3] = 2;
 
        // iterate for all values from 4 to n
        for (int i = 4; i <= n; i++)
            DP[i] = DP[i - 1] + DP[i - 3]
                    + DP[i - 4];
 
        return DP[n];
    }
 
    // driver code
    public static void main(String[] args)
    {
        int n = 10;
        System.out.println(countWays(n));
    }
}
 
// This code is contributed
// by prerna saini.

Python3




# Python program to illustrate the number of
# ways to represent N as sum of 1, 3 and 4.
 
# Function to count the number of
# ways to represent n as sum of 1, 3 and 4
def countWays(n):
 
    DP = [0 for i in range(0, n + 1)]
     
    # base cases
    DP[0] = DP[1] = DP[2] = 1
    DP[3] = 2
 
    # Iterate for all values from 4 to n
    for i in range(4, n + 1):
        DP[i] = DP[i - 1] + DP[i - 3] + DP[i - 4]
     
    return DP[n]
 
     
# Driver code
n = 10
print (countWays(n))
 
# This code is contributed by Gitanjali.

C#




// C# program to illustrate
// the number of ways to represent
// N as sum of 1, 3 and 4.
using System;
 
class GFG {
 
    // Function to count the
    // number of ways to represent
    // n as sum of 1, 3 and 4
    static int countWays(int n)
    {
        int []DP = new int[n + 1];
 
        // base cases
        DP[0] = DP[1] = DP[2] = 1;
        DP[3] = 2;
 
        // iterate for all values from 4 to n
        for (int i = 4; i <= n; i++)
            DP[i] = DP[i - 1] + DP[i - 3]
                    + DP[i - 4];
 
        return DP[n];
    }
 
    // Driver code
    public static void Main()
    {
        int n = 10;
        Console.WriteLine(countWays(n));
    }
}
 
// This code is contributed
// by vt_m.

PHP




<?php
// PHP program to illustrate
// the number of ways to
// represent N as sum of
// 1, 3 and 4.
 
// function to count the
// number of ways to
// represent n as sum of
// 1, 3 and 4
function countWays($n)
{
    $DP = array();
 
    // base cases
    $DP[0] = $DP[1] = $DP[2] = 1;
    $DP[3] = 2;
 
    // iterate for all
    // values from 4 to n
    for ($i = 4; $i <= $n; $i++)
        $DP[$i] = $DP[$i - 1] +
                  $DP[$i - 3] +
                  $DP[$i - 4];
     
    return $DP[$n];
}
 
// Driver Code
$n = 10;
echo countWays($n);
 
// This code is contributed
// by Sam007
?>

Javascript




<script>
 
// Javascript program to illustrate
// the number of ways to represent
// N as sum of 1, 3 and 4.
 
// Function to count the
// number of ways to represent
// n as sum of 1, 3 and 4
function countWays(n)
{
    var DP = [];
    DP.length = 10;
    DP.fill(0);
 
    // Base cases
    DP[0] = DP[1] = DP[2] = 1;
    DP[3] = 2;
 
    // Iterate for all values from 4 to n
    for(var i = 4; i <= n; i++)
        DP[i] = DP[i - 1] + DP[i - 3] +
                DP[i - 4];
 
    return DP[n];
}
 
// Driver code
var n = 10;
 
document.write(countWays(n));
 
// This code is contributed by bunnyram19  
 
</script>

Output: 

64

Time Complexity : O(n) 
Auxiliary Space : O(n)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!