Open In App

# Count number of ways to cover a distance

Given a distance ‘dist’, count total number of ways to cover the distance with 1, 2 and 3 steps.

Examples:

```Input: n = 3
Output: 4
Explanation:
Below are the four ways
1 step + 1 step + 1 step
1 step + 2 step
2 step + 1 step
3 step

Input: n = 4
Output: 7
Explanation:
Below are the four ways
1 step + 1 step + 1 step + 1 step
1 step + 2 step + 1 step
2 step + 1 step + 1 step
1 step + 1 step + 2 step
2 step + 2 step
3 step + 1 step
1 step + 3 step```
Recommended Practice

Recursive solution

• Approach: There are n stairs, and a person is allowed to next step, skip one position or skip two positions. So there are n positions. The idea is standing at the ith position the person can move by i+1, i+2, i+3 position. So a recursive function can be formed where at current index i the function is recursively called for i+1, i+2 and i+3 positions.
There is another way of forming the recursive function. To reach position i, a person has to jump either from i-1, i-2 or i-3 position where i is the starting position.

• Algorithm:
1. Create a recursive function (count(int n)) which takes only one parameter.
2. Check the base cases. If the value of n is less than 0 then return 0, and if value of n is equal to zero then return 1 as it is the starting position.
3. Call the function recursively with values n-1, n-2 and n-3 and sum up the values that are returned, i.e. sum = count(n-1) + count(n-2) + count(n-3).
4. Return the value of sum.
• Implementation:

## C++

 `// A naive recursive C++ program to count number of ways to cover``// a distance with 1, 2 and 3 steps``#include``using` `namespace` `std;` `// Returns count of ways to cover 'dist'``int` `printCountRec(``int` `dist)``{``    ``// Base cases``    ``if` `(dist<0)      ``return` `0;``    ``if` `(dist==0)  ``return` `1;` `    ``// Recur for all previous 3 and add the results``    ``return` `printCountRec(dist-1) +``           ``printCountRec(dist-2) +``           ``printCountRec(dist-3);``}` `// driver program``int` `main()``{``    ``int` `dist = 4;``    ``cout << printCountRec(dist);``    ``return` `0;``}`

## Java

 `// A naive recursive Java program to count number``// of ways to cover a distance with 1, 2 and 3 steps``import` `java.io.*;` `class` `GFG``{``    ``// Function returns count of ways to cover 'dist'``    ``static` `int` `printCountRec(``int` `dist)``    ``{``        ``// Base cases``        ``if` `(dist<``0``)   ``            ``return` `0``;``        ``if` `(dist==``0``)   ``            ``return` `1``;`` ` `        ``// Recur for all previous 3 and add the results``        ``return` `printCountRec(dist-``1``) +``               ``printCountRec(dist-``2``) +``               ``printCountRec(dist-``3``);``    ``}``    ` `    ``// driver program``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `dist = ``4``;``        ``System.out.println(printCountRec(dist));``    ``}``}` `// This code is contributed by Pramod Kumar`

## Python3

 `# A naive recursive Python3 program``# to count number of ways to cover``# a distance with 1, 2 and 3 steps` `# Returns count of ways to``# cover 'dist'``def` `printCountRec(dist):``    ` `    ``# Base cases``    ``if` `dist < ``0``:``        ``return` `0``        ` `    ``if` `dist ``=``=` `0``:``        ``return` `1` `    ``# Recur for all previous 3 and      ``   ``# add the results``    ``return` `(printCountRec(dist``-``1``) ``+``            ``printCountRec(dist``-``2``) ``+``            ``printCountRec(dist``-``3``))` `# Driver code``dist ``=` `4``print``(printCountRec(dist))``# This code is contributed by Anant Agarwal.`

## C#

 `// A naive recursive C# program to``// count number of ways to cover a``// distance with 1, 2 and 3 steps``using` `System;` `class` `GFG {``    ` `    ``// Function returns count of``    ``// ways to cover 'dist'``    ``static` `int` `printCountRec(``int` `dist)``    ``{``        ``// Base cases``        ``if` `(dist < 0)``            ``return` `0;``        ``if` `(dist == 0)``            ``return` `1;` `        ``// Recur for all previous 3``        ``// and add the results``        ``return` `printCountRec(dist - 1) +``               ``printCountRec(dist - 2) +``               ``printCountRec(dist - 3);``    ``}``    ` `    ``// Driver Code``    ``public` `static` `void` `Main ()``    ``{``        ``int` `dist = 4;``        ``Console.WriteLine(printCountRec(dist));``    ``}``}` `// This code is contributed by Sam007.`

## PHP

 ``

## Javascript

 ``

Output:

`7`
• Complexity Analysis:
• Time Complexity: O(3n).
The time complexity of the above solution is exponential, a close upper bound is O(3n). From each state 3, a recursive function is called. So the upper bound for n states is O(3n).
• Space complexity: O(1).
No extra space is required.

Efficient solution

• Approach: The idea is similar, but it can be observed that there are n states but the recursive function is called 3 ^ n times. That means that some states are called repeatedly. So the idea is to store the value of states. This can be done in two ways.
• Algorithm:
1. Create an array of size n + 1 and initialize the first 3 variables with 1, 1, 2. The base cases.
2. Run a loop from 3 to n.
3. For each index i, compute value of ith position as dp[i] = dp[i-1] + dp[i-2] + dp[i-3].
4. Print the value of dp[n], as the Count of number of ways to cover a distance.
• Implementation:

## C++

 `// A Dynamic Programming based C++ program to count number of ways``// to cover a distance with 1, 2 and 3 steps``#include``using` `namespace` `std;` `int` `printCountDP(``int` `dist)``{``    ``int` `count[dist+1];` `    ``// Initialize base values. There is one way to cover 0 and 1``    ``// distances and two ways to cover 2 distance``     ``count = 1;``     ``if``(dist >= 1)``            ``count = 1;``     ``if``(dist >= 2)``              ``count = 2;` `    ``// Fill the count array in bottom up manner``    ``for` `(``int` `i=3; i<=dist; i++)``       ``count[i] = count[i-1] + count[i-2] + count[i-3];` `    ``return` `count[dist];``}` `// driver program``int` `main()``{``    ``int` `dist = 4;``    ``cout << printCountDP(dist);``    ``return` `0;``}`

## Java

 `// A Dynamic Programming based Java program``// to count number of ways to cover a distance``// with 1, 2 and 3 steps``import` `java.io.*;` `class` `GFG``{``    ``// Function returns count of ways to cover 'dist'``    ``static` `int` `printCountDP(``int` `dist)``    ``{``        ``int``[] count = ``new` `int``[dist+``1``];`` ` `        ``// Initialize base values. There is one way to``        ``// cover 0 and 1 distances and two ways to``        ``// cover 2 distance``        ``count[``0``] = ``1``;``          ``if``(dist >= ``1``)``            ``count[``1``] = ``1``;``        ``if``(dist >= ``2``)``              ``count[``2``] = ``2``;`` ` `        ``// Fill the count array in bottom up manner``        ``for` `(``int` `i=``3``; i<=dist; i++)``            ``count[i] = count[i-``1``] + count[i-``2``] + count[i-``3``];`` ` `        ``return` `count[dist];``    ``}``    ` `    ``// driver program``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `dist = ``4``;``        ``System.out.println(printCountDP(dist));``    ``}``}` `// This code is contributed by Pramod Kumar`

## Python3

 `# A Dynamic Programming based on Python3``# program to count number of ways to``# cover a distance with 1, 2 and 3 steps` `def` `printCountDP(dist):``    ``count ``=` `[``0``] ``*` `(dist ``+` `1``)``    ` `    ``# Initialize base values. There is``    ``# one way to cover 0 and 1 distances``    ``# and two ways to cover 2 distance``    ``count[``0``] ``=` `1``    ``if` `dist >``=` `1` `:``        ``count[``1``] ``=` `1``    ``if` `dist >``=` `2` `:``        ``count[``2``] ``=` `2``    ` `    ``# Fill the count array in bottom``    ``# up manner``    ``for` `i ``in` `range``(``3``, dist ``+` `1``):``        ``count[i] ``=` `(count[i``-``1``] ``+``                   ``count[i``-``2``] ``+` `count[i``-``3``])``        ` `    ``return` `count[dist];` `# driver program``dist ``=` `4``;``print``( printCountDP(dist))` `# This code is contributed by Sam007.`

## C#

 `// A Dynamic Programming based C# program``// to count number of ways to cover a distance``// with 1, 2 and 3 steps``using` `System;` `class` `GFG {``    ` `    ``// Function returns count of ways``    ``// to cover 'dist'``    ``static` `int` `printCountDP(``int` `dist)``    ``{``        ``int``[] count = ``new` `int``[dist + 1];` `        ``// Initialize base values. There is one``        ``// way to cover 0 and 1 distances``        ``// and two ways to cover 2 distance``        ``count = 1;``        ``count = 1;``        ``count = 2;` `        ``// Fill the count array``        ``// in bottom up manner``        ``for` `(``int` `i = 3; i <= dist; i++)``            ``count[i] = count[i - 1] +``                       ``count[i - 2] +``                       ``count[i - 3];` `        ``return` `count[dist];``    ``}``    ` `    ``// Driver Code``    ``public` `static` `void` `Main ()``    ``{``        ``int` `dist = 4;``        ``Console.WriteLine(printCountDP(dist));``    ``}``}` `// This code is contributed by Sam007.`

## PHP

 ``

## Javascript

 ``

Output :

`7`
• Complexity Analysis:
• Time Complexity: O(n).
Only one traversal of the array is needed. So Time Complexity is O(n)
• Space complexity: O(n).
To store the values in a DP O(n) extra space is needed.

More Optimal Solution

Approach: Instead of using array of size n+1 we can use array of size 3 because for calculating no of ways for a particular step we need only last     3 steps no of ways.

Algorithm:

1. Create an array of size 3 and initialize the values for step 0,1,2 as 1,1,2 (Base cases).
2. Run a loop from 3 to n(dist).
3. For each index compute the value as ways[i%3] = ways[(i-1)%3] + ways[(i-2)%3] + ways[(i-3)%3] and store its value at i%3 index of array ways. If we are computing value for index 3 then the computed value will go at index 0 because for larger indices(4 ,5,6…..) we don’t need the value of index 0.
4. Return the value of ways[n%3].

## C++

 `// A Dynamic Programming based C++ program to count number of ways``#include``using` `namespace` `std;`` ` `int` `printCountDP(``int` `dist)``{``        ``//Create the array of size 3.``        ``int`  `ways , n = dist;``        ` `        ``//Initialize the bases cases``        ``ways = 1;``        ``ways = 1;``        ``ways = 2;``        ` `        ``//Run a loop from 3 to n``        ``//Bottom up approach to fill the array``        ``for``(``int` `i=3 ;i<=n ;i++)``            ``ways[i%3] = ways[(i-1)%3] + ways[(i-2)%3] + ways[(i-3)%3];``        ` `        ``return` `ways[n%3];``}`` ` `// driver program``int` `main()``{``    ``int` `dist = 4;``    ``cout << printCountDP(dist);``    ``return` `0;``}`

## Java

 `// A Dynamic Programming based Java program to count number of ways``import` `java.util.*;`` ` `class` `GFG {`` ` `static` `int` `printCountDP(``int` `dist)``{``        ``// Create the array of size 3.``        ``int` `[]ways = ``new` `int``[``3``];``        ``int` `n = dist;``        ` `        ` `        ``// Initialize the bases cases``        ``ways[``0``] = ``1``;``        ``ways[``1``] = ``1``;``        ``ways[``2``] = ``2``;``        ` `        ``// Run a loop from 3 to n``        ``// Bottom up approach to fill the array``        ``for``(``int` `i=``3` `;i<=n ;i++)``            ``ways[i%``3``] = ways[(i-``1``)%``3``] + ways[(i-``2``)%``3``] + ways[(i-``3``)%``3``];``        ` `        ``return` `ways[n%``3``];``}`` ` `// driver program``public` `static` `void` `main(String arg[])``    ``{``    ``int` `dist = ``4``;``    ``System.out.print(printCountDP(dist));``    ``}``}` `// this code is contributed by shivanisinghss2110`

## Python3

 `# A Dynamic Programming based C++ program to count number of ways``def` `prCountDP( dist):` `        ``# Create the array of size 3.``        ``ways ``=` `[``0``]``*``3``        ``n ``=` `dist``        ` `        ``# Initialize the bases cases``        ``ways[``0``] ``=` `1``        ``ways[``1``] ``=` `1``        ``ways[``2``] ``=` `2``        ` `        ``# Run a loop from 3 to n``        ``# Bottom up approach to fill the array``        ``for` `i ``in` `range``(``3``, n ``+` `1``):``            ``ways[i ``%` `3``] ``=` `ways[(i ``-` `1``) ``%` `3``] ``+` `ways[(i ``-` `2``) ``%` `3``] ``+` `ways[(i ``-` `3``) ``%` `3``]``        ` `        ``return` `ways[n ``%` `3``]`` ` `# driver program``dist ``=` `4``print``(prCountDP(dist))` `# This code is contributed by shivanisinghss2110`

## C#

 `// A Dynamic Programming based C#``// program to count number of ways``using` `System;`` ` `class` `GFG{`` ` `static` `int` `printCountDP(``int` `dist)``{``    ``// Create the array of size 3.``    ``int` `[]ways = ``new` `int``;``    ``int` `n = dist;``    ` `    ``// Initialize the bases cases``    ``ways = 1;``    ``ways = 1;``    ``ways = 2;``    ` `    ``// Run a loop from 3 to n``    ``// Bottom up approach to fill the array``    ``for``(``int` `i = 3; i <= n; i++)``        ``ways[i % 3] = ways[(i - 1) % 3] +``                      ``ways[(i - 2) % 3] +``                      ``ways[(i - 3) % 3];``    ` `    ``return` `ways[n % 3];``}`` ` `// Driver code``public` `static` `void` `Main(String []arg)``{``    ``int` `dist = 4;``    ` `    ``Console.Write(printCountDP(dist));``}``}` `// This code is contributed by shivanisinghss2110`

## Javascript

 ``

Output :

`7`

Time Complexity : O(n)

Space Complexity : O(1)