# Count minimum moves required to convert A to B

Given two integers A and B, convert A to B by performing one of the following operations any number of times:

• A = A + K
• A = A – K, where K belongs to [1, 10]

The task is to find the minimum number of operations required to convert A to B using the above operations.

Examples:

Input: A = 13, B = 42
Output: 3
Explanation:
The following sequence of moves can be performed: 13 → 23 → 32 → 42(add 10, add 9, add 10).

Input: A = 18, B = 4
Output: 2
Explanation:
The following sequence of moves can be performed: 18 → 10 → 4 (subtract 8, subtract 6).

Approach: The idea is to simply calculate the required number of moves by dividing the absolute difference of A and B by all the numbers in the range [1…10] and adding it to the resultant variable. Follow the steps below to solve the problem:

• Initialize a variable required_moves to store the minimum count of moves required.
• Find the absolute difference of A and B.
• Iterate over the range [1, 10] and perform the following operations:
• Divide the number by i and add it to the resultant variable.
• Calculate modulo of absolute difference by i

• Finally, print the value of required_moves.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach`   `#include ` `using` `namespace` `std;`   `// Function to find minimum number` `// of moves to obtained B from A` `void` `convertBfromA(``int` `a, ``int` `b)` `{` `    ``// Stores the minimum` `    ``// number of moves` `    ``int` `moves = 0;`   `    ``// Absolute difference` `    ``int` `x = ``abs``(a - b);`   `    ``// K is in range [0, 10]` `    ``for` `(``int` `i = 10; i > 0; i--) {` `        ``moves += x / i;` `        ``x = x % i;` `    ``}`   `    ``// Print the required moves` `    ``cout << moves << ``" "``;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `A = 188, B = 4;`   `    ``convertBfromA(A, B);`   `    ``return` `0;` `}`

## Java

 `// Java program for the above approach` `import` `java.io.*;`   `class` `GFG{`   `// Function to find minimum number` `// of moves to obtained B from A` `static` `void` `convertBfromA(``int` `a, ``int` `b)` `{` `    `  `    ``// Stores the minimum` `    ``// number of moves` `    ``int` `moves = ``0``;`   `    ``// Absolute difference` `    ``int` `x = Math.abs(a - b);`   `    ``// K is in range [0, 10]` `    ``for``(``int` `i = ``10``; i > ``0``; i--)` `    ``{` `        ``moves += x / i;` `        ``x = x % i;` `    ``}`   `    ``// Print the required moves` `    ``System.out.print(moves + ``" "``);` `}`   `// Driver Code` `public` `static` `void` `main (String[] args)` `{` `    ``int` `A = ``188``, B = ``4``;`   `    ``convertBfromA(A, B);` `}` `}`   `// This code is contributed by code_hunt`

## Python3

 `# Python3 program for the above approach`   `# Function to find minimum number` `# of moves to obtained B from A` `def` `convertBfromA(a, b):` `    `  `    ``# Stores the minimum` `    ``# number of moves` `    ``moves ``=` `0`   `    ``# Absolute difference` `    ``x ``=` `abs``(a ``-` `b)`   `    ``# K is in range [0, 10]` `    ``for` `i ``in` `range``(``10``, ``0``, ``-``1``):` `        ``moves ``+``=` `x ``/``/` `i` `        ``x ``=` `x ``%` `i` `    `  `    ``# Print the required moves` `    ``print``(moves, end ``=` `" "``)`   `# Driver Code` `A ``=` `188` `B ``=` `4`   `convertBfromA(A, B)`   `# This code is contributed by code_hunt`

## C#

 `// C# program for the above approach  ` `using` `System;`   `class` `GFG{`   `// Function to find minimum number` `// of moves to obtained B from A` `static` `void` `convertBfromA(``int` `a, ``int` `b)` `{` `    `  `    ``// Stores the minimum` `    ``// number of moves` `    ``int` `moves = 0;`   `    ``// Absolute difference` `    ``int` `x = Math.Abs(a - b);`   `    ``// K is in range [0, 10]` `    ``for``(``int` `i = 10; i > 0; i--) ` `    ``{` `        ``moves += x / i;` `        ``x = x % i;` `    ``}`   `    ``// Print the required moves` `    ``Console.Write(moves + ``" "``);` `}`   `// Driver Code` `public` `static` `void` `Main ()` `{` `    ``int` `A = 188, B = 4;`   `    ``convertBfromA(A, B);` `}` `}`   `// This code is contributed by code_hunt`

Output:

```19

```

Time Complexity: O(K), where K is in the range [0, 10]
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : code_hunt