Skip to content
Related Articles

Related Articles

Count index pairs which satisfy the given condition
  • Last Updated : 23 May, 2019

Given a permutation P of first N natural numbers, the task is to count the index pairs (i, j) such that P[i] + P[j] = max(P[x]) where i ≤ x ≤ j.

Examples:

Input: P[] = {3, 4, 1, 5, 2}
Output: 2
Only valid index pairs are (0, 4) and (0, 2)

Input: P[] = {1, 3, 2}
Output: 1

Naive approach: We can solve this problem by iterating for all possible pairs (i, j) and each time get maximum between them. The time complexity of this approach will be O(n3).



Efficient Approach: Fix the maximum element on a segment and iterate on either the elements to the left of it or to the right of it. If the current maximum is x, and element we found is y then check whether element x-y can form a subsegment with y (i.e. x is maximum value on segment
between y and x-y). This works in O(n*n)
But if we can precompute the borders of the segments where x is the maximum element and always choose to iterate on the smaller part of the segment then time complexity will reduce to O(nlogn).
Because every element will be processed no more than logn times, if we process it in a segment of size m, the smaller part of it contains no more than m/2 elements ( which we will process later, and the smaller part of this segment contains no more than m/4 elements, and so on..).

Below is the implementation of the above approach:

C++




// CPP implementation of the approach
#include<bits/stdc++.h>
using namespace std;
  
// Function to return the count of 
// required index pairs
int Count_Segment(int p[], int n)
{
    // To store the required count
    int count = 0;
  
    // Array to store the left elements 
    // upto which current element is maximum 
    int upto[n + 1];
    for(int i = 0; i < n + 1; i++)
    upto[i] = 0;
  
    // Iterating through the whole permutation 
    // except first and last element
    int j = 0,curr = 0;
    for (int i = 1; i < n + 1; i++)
    {
  
        // If current element can be maximum 
        // in a subsegment
        if (p[i] > p[i - 1] and p[i] > p[i + 1])
        {
  
            // Current maximum 
            curr = p[i];
  
            // Iterating for smaller values then 
            // current maximum on left of it 
            j = i - 1;
            while (j >= 0 and p[j] < curr)
            {
            // Storing left borders 
                // of the current maximum
                upto[p[j]]= curr;
                j -= 1;
            }
  
                  
  
            // Iterating for smaller values then 
            // current maximum on right of it
            j = i + 1;
            while (j < n and p[j] < curr)
            {
  
                // Condition satisfies
                if (upto[curr-p[j]] == curr)
                    count += 1;
                j+= 1;
            }
                  
        }
    }
  
    // Return count of subsegments
    return count;
}
      
  
// Driver Code
int main()
{
  
    int p[] = {3, 4, 1, 5, 2};
    int n = sizeof(p)/sizeof(p[0]);
    cout << (Count_Segment(p, n));
    return 0;
}
      
// This code is contributed by
// Surendra_Gangwar

Java




// Java implementation of the approach 
import java.util.*;
  
class GFG
{
  
// Function to return the count of 
// required index pairs
static int Count_Segment(int p[], int n)
{
    // To store the required count
    int count = 0;
  
    // Array to store the left elements 
    // upto which current element is maximum 
    int []upto = new int[n + 1];
    for(int i = 0; i < n + 1; i++)
    upto[i] = 0;
  
    // Iterating through the whole permutation 
    // except first and last element
    int j = 0,curr = 0;
    for (int i = 1; i < n ; i++)
    {
  
        // If current element can be maximum 
        // in a subsegment
        if (p[i] > p[i - 1] && p[i] > p[i + 1])
        {
  
            // Current maximum 
            curr = p[i];
  
            // Iterating for smaller values then 
            // current maximum on left of it 
            j = i - 1;
            while (j >= 0 && p[j] < curr)
            {
                // Storing left borders 
                // of the current maximum
                upto[p[j]]= curr;
                j -= 1;
            }
  
                  
  
            // Iterating for smaller values then 
            // current maximum on right of it
            j = i + 1;
            while (j < n && p[j] < curr)
            {
  
                // Condition satisfies
                if (upto[curr-p[j]] == curr)
                    count += 1;
                j+= 1;
            }
                  
        }
    }
  
    // Return count of subsegments
    return count;
}
      
  
// Driver Code
public static void main(String[] args) 
{
    int p[] = {3, 4, 1, 5, 2};
    int n = p.length;
    System.out.println(Count_Segment(p, n));
}
}
  
/* This code contributed by PrinciRaj1992 */

Python




# Python3 implementation of the approach
  
# Function to return the count of 
# required index pairs
def Count_Segment(p, n):
      
    # To store the required count
    count = 0
  
    # Array to store the left elements 
    # upto which current element is maximum 
    upto = [False]*(n + 1)
  
    # Iterating through the whole permutation 
    # except first and last element
    for i in range(1, n-1):
  
        # If current element can be maximum 
        # in a subsegment
        if p[i]>p[i-1] and p[i]>p[i + 1]:
  
            # Current maximum 
            curr = p[i]
  
            # Iterating for smaller values then 
            # current maximum on left of it 
            j = i-1
            while j>= 0 and p[j]<curr:
  
                # Storing left borders 
                # of the current maximum
                upto[p[j]]= curr
                j-= 1
  
            # Iterating for smaller values then 
            # current maximum on right of it
            j = i + 1
            while j<n and p[j]<curr:
  
                # Condition satisfies
                if upto[curr-p[j]]== curr:
                    count+= 1
                j+= 1
  
    # Return count of subsegments
    return count
  
# Driver Code
if __name__=="__main__":
    p =[3, 4, 1, 5, 2]
    n = len(p)
    print(Count_Segment(p, n))

C#




// C# implementation of the approach 
using System;
  
class GFG
{
      
// Function to return the count of 
// required index pairs
static int Count_Segment(int []p, int n)
{
    // To store the required count
    int count = 0;
  
    // Array to store the left elements 
    // upto which current element is maximum 
    int []upto = new int[n + 1];
    for(int i = 0; i < n + 1; i++)
    upto[i] = 0;
  
    // Iterating through the whole permutation 
    // except first and last element
    int j = 0,curr = 0;
    for (int i = 1; i < n ; i++)
    {
  
        // If current element can be maximum 
        // in a subsegment
        if (p[i] > p[i - 1] && p[i] > p[i + 1])
        {
  
            // Current maximum 
            curr = p[i];
  
            // Iterating for smaller values then 
            // current maximum on left of it 
            j = i - 1;
            while (j >= 0 && p[j] < curr)
            {
                // Storing left borders 
                // of the current maximum
                upto[p[j]]= curr;
                j= j - 1;
            }
  
                  
  
            // Iterating for smaller values then 
            // current maximum on right of it
            j = i + 1;
            while (j < n && p[j] < curr)
            {
  
                // Condition satisfies
                if (upto[curr-p[j]] == curr)
                    count += 1;
                j= j+ 1;
            }
                  
        }
    }
  
    // Return count of subsegments
    return count;
}
      
  
// Driver Code
static public void Main ()
{
    int []p = {3, 4, 1, 5, 2};
    int n = p.Length;
    Console.WriteLine(Count_Segment(p, n));
}
}
  
/* This code contributed by ajit*/
Output:
2

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :