# Count all possible N digit numbers that satisfy the given condition

Given an integer **N**, the task is to count all possible **N digit numbers** such that **A + reverse(A) = 10 ^{N} – 1** where

**A**is an N digit number and reverse(A) is reverse of A.

**A**shouldn’t have any leading 0s.

**Examples:**

Input:N = 2

Output:9

All possible 2 digit numbers are 90, 81, 72, 63, 54, 45, 36, 27 and 18.

Input:N = 4

Output:90

**Approach:** First we have to conclude that if N is odd then there is no number which will satisfy the given condition, let’s prove it for **N = 3**,

,

so and .

which is impossible as it is a floating point number.

Now Find answer for when **N is even**. For example, N=4,

and now ifx + y = 9then the number of pairs which satisfy this condition are 10.

(0, 9), (1, 8), (2, 7), (3, 6), (4, 5), (5, 4), (6, 3), (7, 2), (8, 1), (9, 0)

Now, 1st and N^{th}digit cannot have the pair (0, 9) as there shouldn’t be any leading 0s in Abut for all the remaining N/2-1 pairs there can be 10 pairs.

So the answer is , As N is large so we will print 9 followed by N/2-1 number of 0s.

Below is the implementation of the above approach:

## C++

`// C++ implementation of above approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to return the count of required numbers ` `string getCount(` `int` `N) ` `{ ` ` ` ` ` `// If N is odd then return 0 ` ` ` `if` `(N % 2 == 1) ` ` ` `return` `0; ` ` ` ` ` `string result = ` `"9"` `; ` ` ` ` ` `for` `(` `int` `i = 1; i <= N / 2 - 1; i++) ` ` ` `result += ` `"0"` `; ` ` ` ` ` `return` `result; ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` ` ` `int` `N = 4; ` ` ` `cout << getCount(N); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java implementation of above approach ` `class` `GFG ` `{ ` ` ` `// Function to return the count of required numbers ` ` ` `static` `String getCount(` `int` `N) ` ` ` `{ ` ` ` ` ` `// If N is odd then return 0 ` ` ` `if` `(N % ` `2` `== ` `1` `) ` ` ` `return` `"0"` `; ` ` ` ` ` `String result = ` `"9"` `; ` ` ` `for` `(` `int` `i = ` `1` `; i <= N / ` `2` `- ` `1` `; i++) ` ` ` `result += ` `"0"` `; ` ` ` `return` `result; ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `main(String []args) ` ` ` `{ ` ` ` ` ` `int` `N = ` `4` `; ` ` ` `System.out.println(getCount(N)); ` ` ` `} ` `} ` ` ` `// This code is contributed by ihritik ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 implementation of above approach ` ` ` `# Function to return the count of required numbers ` `def` `getCount(N): ` ` ` ` ` `# If N is odd then return 0 ` ` ` `if` `(N ` `%` `2` `=` `=` `1` `): ` ` ` `return` `"0"` ` ` ` ` `result ` `=` `"9"` ` ` ` ` `for` `i ` `in` `range` `(` `1` `, N ` `/` `/` `2` `): ` ` ` `result ` `=` `result ` `+` `"0"` ` ` ` ` `return` `result ` ` ` `# Driver Code ` `N ` `=` `4` `print` `(getCount(N)) ` ` ` `# This code is contributed by ihritik ` |

*chevron_right*

*filter_none*

## C#

`// C# implementation of above approach ` `using` `System; ` ` ` `class` `GFG ` `{ ` ` ` `// Function to return the count of required numbers ` ` ` `static` `string` `getCount(` `int` `N) ` ` ` `{ ` ` ` ` ` `// If N is odd then return 0 ` ` ` `if` `(N % 2 == 1) ` ` ` `return` `"0"` `; ` ` ` `string` `result = ` `"9"` `; ` ` ` `for` `(` `int` `i = 1; i <= N / 2 - 1; i++) ` ` ` `result += ` `"0"` `; ` ` ` `return` `result; ` ` ` `} ` ` ` ` ` `// Driver Code ` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` ` ` `int` `N = 4; ` ` ` `Console.WriteLine(getCount(N)); ` ` ` `} ` `} ` ` ` `// This code is contributed by ihritik ` |

*chevron_right*

*filter_none*

## PHP

`<?php ` `// PHP implementation of above approach ` ` ` `// Function to return the count of ` `// required numbers ` `function` `getCount(` `$N` `) ` `{ ` ` ` ` ` `// If N is odd then return 0 ` ` ` `if` `(` `$N` `% 2 == 1) ` ` ` `return` `0; ` ` ` ` ` `$result` `= ` `"9"` `; ` ` ` ` ` `for` `(` `$i` `= 1; ` `$i` `<= ` `$N` `/ 2 - 1; ` `$i` `++) ` ` ` `$result` `.= ` `"0"` `; ` ` ` ` ` `return` `$result` `; ` `} ` ` ` `// Driver Code ` `$N` `= 4; ` `echo` `getCount(` `$N` `); ` ` ` `// This code is contributed by Ryuga ` `?> ` |

*chevron_right*

*filter_none*

**Output:**

90

**Time Complexity:** O(N)

## Recommended Posts:

- Count of N digit numbers possible which satisfy the given conditions
- Count of sub-sequences which satisfy the given condition
- Count index pairs which satisfy the given condition
- Count triplet pairs (A, B, C) of points in 2-D space that satisfy the given condition
- Count of Numbers in Range where first digit is equal to last digit of the number
- Number of strings that satisfy the given condition
- Pairs from an array that satisfy the given condition
- Count n digit numbers not having a particular digit
- Count numbers from 1 to n that have 4 as a digit
- Count numbers having 0 as a digit
- Count numbers having 0 as a digit
- Count of all N digit numbers such that num + Rev(num) = 10^N - 1
- Count numbers formed by given two digit with sum having given digits
- Count of n digit numbers whose sum of digits equals to given sum
- Count of Binary Digit numbers smaller than N

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.