Count triplet pairs (A, B, C) of points in 2-D space that satisfy the given condition

Given N points in 2 dimensional space. The task is to count the number of triplets pairs (A, B, C) such that point B is the midpoint of line segment formed by joining points A and C.

Examples:

Input: points = {{1, 1}, {2, 2}, {3, 3}}
Output: 1
The point (2, 2) is the midpoint of the line segment joining points (1, 1) and (3, 3).

Input: points = {{1, 1}, {1, 2}, {1, 5}}
Output: 0



Approach: Consider a pair of points A and C. The midpoint of the line segment joining these points will be ((A * X + C * X) / 2, (A * Y + C * Y) / 2)). If the point is present in the given list of points, we have found a triplet. To quickly check if a point is in our list of points we can use a set. Doing this for all pairs of points will give us the required count.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count of possible triplets
int countTriplets(int n, vector<pair<int, int> > points)
{
    set<pair<int, int> > pts;
    int ct = 0;
  
    // Insert all the points in a set
    for (int i = 0; i < n; i++)
        pts.insert(points[i]);
  
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++) {
            int x = points[i].first + points[j].first;
            int y = points[i].second + points[j].second;
  
            // If the mid point exists in the set
            if (x % 2 == 0 && y % 2 == 0)
                if (pts.find(make_pair(x / 2, y / 2))
                    != pts.end())
                    ct++;
        }
  
    // Return the count of valid triplets
    return ct;
}
  
// Driver code
int main()
{
    vector<pair<int, int> > points
        = { { 1, 1 }, { 2, 2 }, { 3, 3 } };
    int n = points.size();
    cout << countTriplets(n, points);
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the count 
# of possible triplets 
def countTriplets(n, points) :
      
    pts = [] 
    ct = 0
  
    # Insert all the points in a set 
    for i in range(n) :
        pts.append(points[i]); 
  
    for i in range(n) :
        for j in range(i + 1, n) : 
            x = points[i][0] + points[j][0]; 
            y = points[i][1] + points[j][1]; 
  
            # If the mid point exists in the set 
            if (x % 2 == 0 and y % 2 == 0) :
                if [x // 2, y // 2] in pts :
                    ct += 1
                      
    # Return the count of valid triplets 
    return ct 
  
# Driver code 
if __name__ == "__main__" :
      
    points = [[ 1, 1 ], [ 2, 2 ], [ 3, 3 ]]
    n = len(points) 
    print(countTriplets(n, points))
  
# This code is contributed by Ryuga

chevron_right


Output:

1


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Ryuga