Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Pairs from an array that satisfy the given condition

  • Difficulty Level : Basic
  • Last Updated : 14 Apr, 2021

Given an array arr[], the task is to count all the valid pairs from the array. A pair (arr[i], arr[j]) is said to be valid if func( arr[i] ) + func( arr[j] ) = func( XOR(arr[i], arr[j]) ) where func(x) returns the number of set bits in x.

Examples: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {2, 3, 4, 5, 6} 
Output:
(2, 4), (2, 5) and (3, 4) are the only valid pairs.



Input: arr[] = {12, 13, 34, 25, 6} 
Output:
 

Approach: Iterating every possible pair and check whether the pair satisfies the given condition. If the condition is satisfied then update count = count + 1. Print the count in the end.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the number
// of set bits in n
int setBits(int n)
{
    int count = 0;
 
    while (n) {
        n = n & (n - 1);
        count++;
    }
    return count;
}
 
// Function to return the count of required pairs
int countPairs(int a[], int n)
{
    int count = 0;
 
    for (int i = 0; i < n - 1; i++) {
 
        // Set bits for first element of the pair
        int setbits_x = setBits(a[i]);
 
        for (int j = i + 1; j < n; j++) {
 
            // Set bits for second element of the pair
            int setbits_y = setBits(a[j]);
 
            // Set bits of the resultant number which is
            // the XOR of both the elements of the pair
            int setbits_xor_xy = setBits(a[i] ^ a[j]);
 
            // If the condition is satisfied
            if (setbits_x + setbits_y == setbits_xor_xy)
 
                // Increment the count
                count++;
        }
    }
 
    // Return the total count
    return count;
}
 
// Driver code
int main()
{
    int a[] = { 2, 3, 4, 5, 6 };
 
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << countPairs(a, n);
}

Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
     
// Function to return the number
// of set bits in n
static int setBits(int n)
{
    int count = 0;
 
    while (n > 0)
    {
        n = n & (n - 1);
        count++;
    }
    return count;
}
 
// Function to return the count of
// required pairs
static int countPairs(int a[], int n)
{
    int count = 0;
 
    for (int i = 0; i < n - 1; i++)
    {
 
        // Set bits for first element
        // of the pair
        int setbits_x = setBits(a[i]);
 
        for (int j = i + 1; j < n; j++)
        {
 
            // Set bits for second element
            // of the pair
            int setbits_y = setBits(a[j]);
 
            // Set bits of the resultant number which is
            // the XOR of both the elements of the pair
            int setbits_xor_xy = setBits(a[i] ^ a[j]);
 
            // If the condition is satisfied
            if (setbits_x + setbits_y == setbits_xor_xy)
 
                // Increment the count
                count++;
        }
    }
 
    // Return the total count
    return count;
}
 
    // Driver code
    public static void main (String[] args)
    {
 
        int []a = { 2, 3, 4, 5, 6 };
        int n = a.length;
        System.out.println(countPairs(a, n));
    }
}
 
// This code is contributed by ajit.

Python3




# Python 3 implementation of the approach
 
# Function to return the number
# of set bits in n
def setBits(n):
    count = 0
 
    while (n):
        n = n & (n - 1)
        count += 1
 
    return count
 
# Function to return the count
# of required pairs
def countPairs(a, n):
    count = 0
 
    for i in range(0, n - 1, 1):
         
        # Set bits for first element
        # of the pair
        setbits_x = setBits(a[i])
 
        for j in range(i + 1, n, 1):
             
            # Set bits for second element
            # of the pair
            setbits_y = setBits(a[j])
 
            # Set bits of the resultant number
            # which is the XOR of both the
            # elements of the pair
            setbits_xor_xy = setBits(a[i] ^ a[j]);
 
            # If the condition is satisfied
            if (setbits_x +
                setbits_y == setbits_xor_xy):
                 
                # Increment the count
                count += 1
 
    # Return the total count
    return count
 
# Driver code
if __name__ == '__main__':
    a = [2, 3, 4, 5, 6]
 
    n = len(a)
    print(countPairs(a, n))
 
# This code is contributed by
# Sanjit_Prasad

C#




// C# implementation of the approach
using System;
class GFG
{
 
// Function to return the number
// of set bits in n
static int setBits(int n)
{
    int count = 0;
 
    while (n > 0)
    {
        n = n & (n - 1);
        count++;
    }
    return count;
}
 
// Function to return the count of
// required pairs
static int countPairs(int []a, int n)
{
    int count = 0;
 
    for (int i = 0; i < n - 1; i++)
    {
 
        // Set bits for first element
        // of the pair
        int setbits_x = setBits(a[i]);
 
        for (int j = i + 1; j < n; j++)
        {
 
            // Set bits for second element
            // of the pair
            int setbits_y = setBits(a[j]);
 
            // Set bits of the resultant number which is
            // the XOR of both the elements of the pair
            int setbits_xor_xy = setBits(a[i] ^ a[j]);
 
            // If the condition is satisfied
            if (setbits_x + setbits_y == setbits_xor_xy)
 
                // Increment the count
                count++;
        }
    }
 
    // Return the total count
    return count;
}
 
// Driver code
public static void Main()
{
    int []a = { 2, 3, 4, 5, 6 };
 
    int n = a.Length;
 
    Console.Write(countPairs(a, n));
}
}
 
// This code is contributed
// by Akanksha Rai

PHP




<?php
// PHP implementation of the approach
 
// Function to return the number
// of set bits in n
function setBits($n)
{
    $count = 0;
 
    while ($n)
    {
        $n = $n & ($n - 1);
        $count++;
    }
    return $count;
}
 
// Function to return the count of
// required pairs
function countPairs(&$a, $n)
{
    $count = 0;
 
    for ($i = 0; $i < $n - 1; $i++)
    {
 
        // Set bits for first element
        // of the pair
        $setbits_x = setBits($a[$i]);
 
        for ($j = $i + 1; $j < $n; $j++)
        {
 
            // Set bits for second element of the pair
            $setbits_y = setBits($a[$j]);
 
            // Set bits of the resultant number which is
            // the XOR of both the elements of the pair
            $setbits_xor_xy = setBits($a[$i] ^ $a[$j]);
 
            // If the condition is satisfied
            if ($setbits_x +
                $setbits_y == $setbits_xor_xy)
 
                // Increment the count
                $count++;
        }
    }
 
    // Return the total count
    return $count;
}
 
// Driver code
$a = array(2, 3, 4, 5, 6 );
$n = sizeof($a) / sizeof($a[0]);
echo countPairs($a, $n);
 
// This code is contributed by ita_c
?>

Javascript




<script>
 
// Javascript implementation of the approach
     
// Function to return the number
// of set bits in n
function setBits(n)
{
    let count = 0;
   
    while (n > 0)
    {
        n = n & (n - 1);
        count++;
    }
    return count;
}
 
// Function to return the count of
// required pairs
function countPairs(a, n)
{
    let count = 0;
   
    for(let i = 0; i < n - 1; i++)
    {
         
        // Set bits for first element
        // of the pair
        let setbits_x = setBits(a[i]);
   
        for(let j = i + 1; j < n; j++)
        {
   
            // Set bits for second element
            // of the pair
            let setbits_y = setBits(a[j]);
   
            // Set bits of the resultant number which is
            // the XOR of both the elements of the pair
            let setbits_xor_xy = setBits(a[i] ^ a[j]);
   
            // If the condition is satisfied
            if (setbits_x + setbits_y == setbits_xor_xy)
   
                // Increment the count
                count++;
        }
    }
   
    // Return the total count
    return count;
}
 
// Driver code
let a = [ 2, 3, 4, 5, 6 ];
let n = a.length;
 
document.write(countPairs(a, n));
 
// This code is contributed by unknown2108
 
</script>
Output: 
3

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :