Count Divisors of Factorial

Given a number n, count total number of divisors of n!.

Examples:

Input : n = 4
Output: 24
4! is 24. Divisors of 24 are 1, 2, 3, 4, 6,
8, 12 and 24.

Input : n = 5
Output : 16
5! is 120. Divisors of 120 are 1, 2, 3, 4, 
5, 6, 8, 10, 12, 15, 20, 24 30, 40, 60 and 
120

Input : n = 6
Output : 30

A Simple Solution is to first compute factorial of given number, then count number divisors of the factorial. This solution is not efficient and may cause overflow due to factorial computation.

A better solution is based on Legendre’s formula . Below are the steps.



  1. Find all prime numbers less than or equal to n (input number). We can use Sieve Algorithm for this. Let n be 6. All prime numbers less than 6 are {2, 3, 5}.
  2. For each prime number p find the largest power of it that divides n!. We use below Legendre’s formula formula for this purpose.
    The value of largest power that divides p is ⌊n/p⌋ + ⌊n/(p2)⌋ + ⌊n/(p3)⌋ + ……
    Let these values be exp1, exp2, exp3,.. Using the above formula, we get below values for n = 6.

    • The largest power of 2 that divides 6!, exp1 = 4.
    • The largest power of 3 that divides 6!, exp2 = 2.
    • The largest power of 5 that divides 6!, exp3 = 1.
  3. The result is (exp1 + 1) * (exp2 + 1) * (exp3 + 1) … for all prime numbers, For n = 6, the values exp1, exp2, and exp3 are 4 2 and 1 respectively (computed in above step 2). So our result is (4 + 1)*(2 + 1) * (1 + 1) = 30

Below is implementation of above idea.

C++

// C++ program to find count of divisors in n!
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long int ull;
  
// allPrimes[] stores all prime numbers less
// than or equal to n.
vector<ull> allPrimes;
  
// Fills above vector allPrimes[] for a given n
void sieve(int n)
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true. A value
    // in prime[i] will finally be false if i is
    // not a prime, else true.
    vector<bool> prime(n+1, true);
  
    // Loop to update prime[]
    for (int p=2; p*p<=n; p++)
    {
        // If prime[p] is not changed, then it
        // is a prime
        if (prime[p] == true)
        {
            // Update all multiples of p
            for (int i=p*2; i<=n; i += p)
                prime[i] = false;
        }
    }
  
    // Store primes in the vector allPrimes
    for (int p=2; p<=n; p++)
        if (prime[p])
            allPrimes.push_back(p);
}
  
// Function to find all result of factorial number
ull factorialDivisors(ull n)
{
    sieve(n);  // create sieve
  
    // Initialize result
    ull result = 1;
  
    // find exponents of all primes which divides n
    // and less than n
    for (int i=0; i < allPrimes.size(); i++)
    {
        // Current divisor
        ull p = allPrimes[i];
  
        // Find the highest power (stored in exp)'
        // of allPrimes[i] that divides n using
        // Legendre's formula.
        ull exp = 0;
        while (p <= n)
        {
            exp = exp + (n/p);
            p = p*allPrimes[i];
        }
  
        // Multiply exponents of all primes less
        // than n
        result = result*(exp+1);
    }
  
    // return total divisors
    return result;
}
  
// Driver program to run the cases
int main()
{
    cout << factorialDivisors(6);
    return 0;
}

Java

// JAVA program to find count of divisors in n!
  
import java.util.*;
class GFG
{
    // allPrimes[] stores all prime numbers less
    // than or equal to n.
    static Vector<Integer> allPrimes=new Vector<Integer>();
      
    // Fills above vector allPrimes[] for a given n
    static void sieve(int n){
        // Create a boolean array "prime[0..n]" and
       // initialize all entries it as true. A value
        // in prime[i] will finally be false if i is
        // not a prime, else true.
        boolean []prime=new boolean[n+1];
          
        for(int i=0;i<=n;i++)
        prime[i]=true;
          
        // Loop to update prime[]
        for (int p=2; p*p<=n; p++)
        {
        // If prime[p] is not changed, then it
        // is a prime
        if (prime[p] == true)
        {
        // Update all multiples of p
            for (int i=p*2; i<=n; i += p)
                prime[i] = false;
        }
        }
        // Store primes in the vector allPrimes
            for (int p=2; p<=n; p++)
                if (prime[p])
                    allPrimes.add(p);
        }
          
        // Function to find all result of factorial number
        static long factorialDivisors(int n)
        {
            sieve(n); // create sieve
          
            // Initialize result
            long result = 1;
          
            // find exponents of all primes which divides n
            // and less than n
            for (int i=0; i < allPrimes.size(); i++)
            {
                // Current divisor
                long p = allPrimes.get(i);
          
                // Find the highest power (stored in exp)'
                // of allPrimes[i] that divides n using
                // Legendre's formula.
                long exp = 0;
                while (p <= n)
                {
                    exp = exp + (n/p);
                    p = p*allPrimes.get(i);
                }
          
                // Multiply exponents of all primes less
                // than n
                result = result*(exp+1);
            }
          
            // return total divisors
            return result;
        }
          
        // Driver program to run the cases
        public static void main(String []args)
        {
            System.out.println(factorialDivisors(6));
              
        }
  
  
}
  
//This code is contributed by ihritik

Output :

30

This article is contributed by Shashank Mishra ( Gullu ).This article is reviewed by team GeeksforGeeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : ihritik