Skip to content
Related Articles

Related Articles

Improve Article
Comparing X^Y and Y^X for very large values of X and Y
  • Last Updated : 03 May, 2021

Given two integer X and Y, the task is compare XY and YX for large values of X and Y.
Examples: 
 

Input: X = 2, Y = 3 
Output: 2^3 < 3^2 
23 < 32
Input: X = 4, Y = 5 
Output: 4^5 > 5^4 
 

 

Naive approach: A basic approach is to find the values XY and YX and compare them which can overflow as the values of X and Y can be large
Better approach: Taking log of both the equations, log(XY) = Y * log(X) and log(YX) = X * log(Y). Now, these values can be compared easily without overflows.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to compare x^y and y^x
void compareVal(int x, int y)
{
 
    // Storing values OF x^y AND y^x
    long double a = y * log(x);
    long double b = x * log(y);
 
    // Comparing values
    if (a > b)
        cout << x << "^" << y << " > "
             << y << "^" << x;
 
    else if (a < b)
        cout << x << "^" << y << " < "
             << y << "^" << x;
 
    else if (a == b)
        cout << x << "^" << y << " = "
             << y << "^" << x;
}
 
// Driver code
int main()
{
    long double x = 4, y = 5;
 
    compareVal(x, y);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
// Function to compare x^y and y^x
static void compareVal(int x, int y)
{
 
    // Storing values OF x^y AND y^x
    double a = y * Math.log(x);
    double b = x * Math.log(y);
 
    // Comparing values
    if (a > b)
        System.out.print(x + "^" + y + " > " +
                         y + "^" + x);
 
    else if (a < b)
        System.out.print(x + "^" + y + " < " +
                         y + "^" + x);
 
    else if (a == b)
        System.out.print(x + "^" + y + " = " +
                         y + "^" + x );
}
 
// Driver code
public static void main(String[] args)
{
    int x = 4, y = 5;
 
    compareVal(x, y);
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 implementation of the approach
from math import log
 
# Function to compare x^y and y^x
def compareVal(x, y) :
     
    # Storing values OF x^y AND y^x
    a = y * log(x);
    b = x * log(y);
     
    # Comparing values
    if (a > b) :
        print(x, "^", y, ">", y, "^", x);
         
    elif (a < b) :
        print(x, "^", y, "<", y ,"^", x);
 
    elif (a == b) :
        print(x, "^", y, "=", y, "^", x);
 
# Driver code
if __name__ == "__main__" :
 
    x = 4; y = 5;
 
    compareVal(x, y);
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
class GFG
{
     
// Function to compare x^y and y^x
static void compareVal(double x, double y)
{
 
    // Storing values OF x^y AND y^x
    double a = y * Math.Log(x);
    double b = x * Math.Log(y);
 
    // Comparing values
    if (a > b)
        Console.Write (x + "^" + y + " > " +
                       y + "^" + x);
 
    else if (a < b)
            Console.Write (x + "^" + y + " < "+
                           y + "^" + x);
 
    else if (a == b)
        Console.Write (x + "^" + y + " = " +
                       y + "^" + x );
}
 
// Driver code
static public void Main ()
{
    double x = 4, y = 5;
 
    compareVal(x, y);
}
}
 
// This Code is contributed by ajit.

Javascript




<script>
// Javascript implementation of the approach
 
// Function to compare x^y and y^x
function compareVal(x, y)
{
 
    // Storing values OF x^y AND y^x
    let a = y * Math.log(x);
    let b = x * Math.log(y);
 
    // Comparing values
    if (a > b)
        document.write(x + "^" + y + " > "
             + y + "^" + x);
 
    else if (a < b)
        document.write(x + "^" + y + " < "
             + y + "^" + x);
 
    else if (a == b)
        document.write(x + "^" + y + " = "
             + y + "^" + x);
}
 
// Driver code
    let x = 4, y = 5;
 
    compareVal(x, y);
 
</script>
Output: 
4^5 > 5^4

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :