Check whether a very large number of the given form is a multiple of 3.

• Difficulty Level : Medium
• Last Updated : 08 Apr, 2021

Consider a very long K-digit number N with digits d0, d1, …, dK-1 (in decimal notation; d0 is the most significant and dK-1 the least significant digit). This number is so large that it can’t be given or written down explicitly; instead, only its starting digits are given and a way to construct the remainder of the number.
Specifically, you are given d0 and d1; for each i ≥ 2, di is the sum of all preceding (more significant) digits, modulo 10, more formally –
Determine if N is a multiple of 3.

Constraints:
2 ≤K ≤1012
1 ≤d0 ≤9
0 ≤d1 ≤9

Examples:

Input : K = 13, d0 = 8, d1 = 1
Output : YES

Explanation: The whole number N is 8198624862486, which is divisible by 3,

Input :  K = 5, d0 = 3, d1 = 4
Output : NO

Explanation: The whole number N is 34748, which is not divisible by 3,

Method 1 (Brute Force)

We can apply the brute force method to calculate the whole number N by using the condition given for constructing the number iteratively (sum of preceding numbers modulo 10) and check whether the number is divisible by 3 or not. But since the number of digits (K) can be as large as 1012, we can’t store it as an integer since it will be very larger than the maximum range of ‘long long int’. Hence below is an efficient method to determine if N is a multiple of 3.

Method 2 (Efficient)

The key idea behind the solution is the fact that the digits start to repeat after some time in a cycle of length 4. Firstly, we will find the sum of all the digits and then determine if it is divisible by 3 or NOT.

We know d0 and d1
d2 = ( d0 + d1 ) % 10
d3 = ( d2 + d1 + d0 ) % 10 = (( d0 + d1) % 10 + d0 + d1) % 10 = 2 * ( d0 + d1 ) % 10
Similarly,
d4 = ( d3 + d2 + d1 + d0 ) % 10 = 4 * ( d0 + d1 ) % 10
d5 = ( d4 + d3 + d2 + d1 + d0 ) % 10 = 8 * ( d0 + d1 ) % 10
d6 = ( d5 + … + d1 + d0 ) % 10 = 16 * (d0 + d3) % 10 = 6 * ( d0 + d1 ) % 10
d7 = ( d6 + … + d1 + d0 ) % 10 = 12 * ( d0 + d1 ) % 10 = 2 * ( d0 + d1 ) % 10

If we keep on finding on di, we will see that that the resultant is just looping around the same values (2, 4, 8, 6).
Here the cycle length is 4 and d2 is not present in the cycle. Hence after d2 the cycle starts forming in length of 4 starting from any value in (2, 4, 8, 6) but in the same order giving a sum of S = 2 + 4 + 8 + 6 = 20 for consecutive four digits. Thus, the total sum of digits for the whole number is = d0 + d1 + d2 + S*(k – 3)/4 + x, where first three terms will be covered by d0, d1, d2
and after that groups of 4 will be covered by S. But since (k – 3) may be not a multiple of 4, some remaining digits will be left which is covered by x which can be calculated by running a loop as those number of terms will be less than 4.

For e.g. When K = 13,
sum of digits = d0 + d1 + d2 + S * (13 – 3) / 4 + x = d0 + d1 + d2 + S * 2 + x,
where first S will have d3, d4, d5, d6 and second S will have d7, d8, d9, d10 and
x = d11 + d12

• d11 = 2 * ( d0 + d1 ) % 10
• d12 = 4 * ( d0 + d1 ) % 10

Below is the implementation of above idea :

C++

 // CPP Program to determine if// number N of given form is// divisible by 3 or not#include using namespace std; // function returns true if number N is// divisible by 3 otherwise false,// dig0 - most significant digit// dig1 - 2nd most significant digit// K - number of digitsbool multipleOfThree(int K, int dig0, int dig1){    // sum of digits    long long int sum = 0;     // store the sum of first two digits    // modulo 10 in a temporary variable    int temp = (dig0 + dig1) % 10;     sum = dig0 + dig1;     // if the number N is a two digit number    if (K == 2) {        if (sum % 3 == 0)            return true;        else            return false;    }     // add temp to sum to get the sum    // of first three digits which are    // not a part of cycle    sum += temp;     // get the number of groups in cycle    long long int numberofGroups = (K - 3) / 4;     // get the remaining number of digits    int remNumberofDigits = (K - 3) % 4;     // if temp = 5 or temp = 0 then sum of each group will    // be 0    if (temp == 5 || temp == 0)        sum += (numberofGroups * 0);     else        // add sum of 20 for each group (2, 4, 8, 6)        sum += (numberofGroups * 20);     // find the remaining sum of remaining digits    for (int i = 0; i < remNumberofDigits; i++) {        temp = (2 * temp) % 10;        sum += temp;    }     // check if it is divisible by 3 or not    if (sum % 3 == 0)        return true;    else        return false;} // Driver Codeint main(){    int K = 5, dig0 = 3, dig1 = 4;    if (multipleOfThree(K, dig0, dig1))        cout << "YES" << endl;    else        cout << "NO" << endl;     K = 10;    dig0 = 3;    dig1 = 2;    if (multipleOfThree(K, dig0, dig1))        cout << "YES" << endl;    else        cout << "NO" << endl;    return 0;}

Java

 // Java Program to determine if// number N of given form is// divisible by 3 or notimport java.io.*; public class GFG {     // function returns true if number N is    // divisible by 3 otherwise false,    // dig0 - most significant digit    // dig1 - 2nd most significant digit    // K - number of digits    static boolean multipleOfThree(int K, int dig0,                                   int dig1)    {         // sum of digits        long sum = 0;         // store the sum of first two digits        // modulo 10 in a temporary variable        int temp = (dig0 + dig1) % 10;         sum = dig0 + dig1;         // if the number N is a two digit number        if (K == 2) {            if (sum % 3 == 0)                return true;            else                return false;        }         // add temp to sum to get the sum        // of first three digits which are        // not a part of cycle        sum += temp;         // get the number of groups in cycle        long numberofGroups = (K - 3) / 4;         // get the remaining number of digits        int remNumberofDigits = (K - 3) % 4;         // add sum of 20 for each group (2, 4, 8, 6)        sum += (numberofGroups * 20);         // find the remaining sum of        // remaining digits        for (int i = 0; i < remNumberofDigits; i++) {            temp = (2 * temp) % 10;            sum += temp;        }         // check if it is divisible by 3 or not        if (sum % 3 == 0)            return true;        else            return false;    }     // Driver Code    static public void main(String[] args)    {        int K = 5, dig0 = 3, dig1 = 4;        if (multipleOfThree(K, dig0, dig1))            System.out.println("Yes");        else            System.out.println("No");    }} // This code is contributed by vt_m.

Python 3

 # Python 3 Program to determine if# number N of given form is# divisible by 3 or not # function returns true if number N# is divisible by 3 otherwise false,# dig0 - most significant digit# dig1 - 2nd most significant digit# K - number of digits  def multipleOfThree(K, dig0, dig1):     # sum of digits    sum = 0     # store the sum of first two digits    # modulo 10 in a temporary variable    temp = (dig0 + dig1) % 10     sum = dig0 + dig1     # if the number N is a    # two digit number    if (K == 2):        if (sum % 3 == 0):            return True        else:            return False     # add temp to sum to get the sum    # of first three digits which are    # not a part of cycle    sum += temp     # get the number of groups in cycle    numberofGroups = (K - 3) // 4     # get the remaining number of digits    remNumberofDigits = (K - 3) % 4     # add sum of 20 for each    # group (2, 4, 8, 6)    sum += (numberofGroups * 20)     # find the remaining sum of    # remaining digits    for i in range(remNumberofDigits):        temp = (2 * temp) % 10        sum += temp     # check if it is divisible    # by 3 or not    if (sum % 3 == 0):        return True    else:        return False  # Driver Codeif __name__ == "__main__":    K = 5    dig0 = 3    dig1 = 4    if (multipleOfThree(K, dig0, dig1)):        print("Yes")    else:        print("No") # This code is contributed by ChitraNayal

C#

 // C# Program to determine if// number N of given form is// divisible by 3 or notusing System; class GFG {     // function returns true if number N is    // divisible by 3 otherwise false,    // dig0 - most significant digit    // dig1 - 2nd most significant digit    // K - number of digits    static bool multipleOfThree(int K, int dig0, int dig1)    {        // sum of digits        long sum = 0;         // store the sum of first two digits        // modulo 10 in a temporary variable        int temp = (dig0 + dig1) % 10;         sum = dig0 + dig1;         // if the number N is        // a two digit number        if (K == 2) {            if (sum % 3 == 0)                return true;            else                return false;        }         // add temp to sum to get the sum        // of first three digits which are        // not a part of cycle        sum += temp;         // get the number of groups in cycle        long numberofGroups = (K - 3) / 4;         // get the remaining number of digits        int remNumberofDigits = (K - 3) % 4;         // add sum of 20 for each group (2, 4, 8, 6)        sum += (numberofGroups * 20);         // find the remaining sum of        // remaining digits        for (int i = 0; i < remNumberofDigits; i++) {            temp = (2 * temp) % 10;            sum += temp;        }         // check if it is divisible by 3 or not        if (sum % 3 == 0)            return true;        else            return false;    }     // Driver Code    static public void Main(String[] args)    {        int K = 5, dig0 = 3, dig1 = 4;        if (multipleOfThree(K, dig0, dig1))            Console.WriteLine("Yes");        else            Console.WriteLine("No");    }} // This code is contributed by vt_m.



Javascript


Output
NO
NO

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up