Choose two elements from the given array such that their sum is not present in any of the arrays

Given two arrays A[] and B[], the task is to choose two elements X and Y such that X belongs to A[] and Y belongs to B[] and (X + Y) must not be present in any of the array.

Examples:

Input: A[] = {3, 2, 2}, B[] = {1, 5, 7, 7, 9}
Output: 3 9
3 + 9 = 12 and 12 is not present in
any of the given arrays.



Input: A[] = {1, 3, 5, 7}, B[] = {7, 5, 3, 1}
Output: 7 7

Approach: Choose X as the maximum element from A[] and Y as the maximum element from B[]. Now, it is obvious that (X + Y) will be greater than the maximum of both the arrays i.e. it will not be present in any og the arrays.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the numbers from
// the given arrays such that their
// sum is not present in any
// of the given array
void findNum(int a[], int n, int b[], int m)
{
    // Find the maximum element
    // from both the arrays
    int x = *max_element(a, a + n);
    int y = *max_element(b, b + m);
    cout << x << " " << y;
}
  
// Driver code
int main()
{
    int a[] = { 3, 2, 2 };
    int n = sizeof(a) / sizeof(int);
    int b[] = { 1, 5, 7, 7, 9 };
    int m = sizeof(b) / sizeof(int);
  
    findNum(a, n, b, m);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
{
      
// find maximum element in an array
static int max_element(int a[], int n)
{
    int m = Integer.MIN_VALUE;
      
    for(int i = 0; i < n; i++)
        m = Math.max(m, a[i]);
      
    return m;
}
  
// Function to find the numbers from
// the given arrays such that their
// sum is not present in any
// of the given array
static void findNum(int a[], int n, 
                    int b[], int m)
{
    // Find the maximum element
    // from both the arrays
    int x = max_element(a, n);
    int y = max_element(b, m);
    System.out.print(x + " " + y);
}
  
// Driver code
public static void main(String args[])
{
    int a[] = { 3, 2, 2 };
    int n = a.length;
    int b[] = { 1, 5, 7, 7, 9 };
    int m = b.length;
  
    findNum(a, n, b, m);
}
}
  
// This code is contributed by Arnub Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to find the numbers from 
# the given arrays such that their 
# sum is not present in any 
# of the given array 
def findNum(a, n, b, m) :
  
    # Find the maximum element 
    # from both the arrays 
    x = max(a); 
    y = max(b); 
    print(x, y); 
  
# Driver code 
if __name__ == "__main__"
  
    a = [ 3, 2, 2 ];
    n = len(a); 
      
    b = [ 1, 5, 7, 7, 9 ]; 
    m = len(b); 
  
    findNum(a, n, b, m);
  
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
      
    // find maximum element in an array
    static int max_element(int []a, int n)
    {
        int m = int.MinValue;
          
        for(int i = 0; i < n; i++)
            m = Math.Max(m, a[i]);
          
        return m;
    }
      
    // Function to find the numbers from
    // the given arrays such that their
    // sum is not present in any
    // of the given array
    static void findNum(int []a, int n, 
                        int []b, int m)
    {
        // Find the maximum element
        // from both the arrays
        int x = max_element(a, n);
        int y = max_element(b, m);
        Console.Write(x + " " + y);
    }
      
    // Driver code
    public static void Main()
    {
        int []a = { 3, 2, 2 };
        int n = a.Length;
        int []b = { 1, 5, 7, 7, 9 };
        int m = b.Length;
      
        findNum(a, n, b, m);
    }
}
  
// This code is contributed by kanugargng

chevron_right


Output:

3 9

Time Complexity: O(1)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.