Check whether given number N is a Moran Number or not
Given an integer N, check whether the given number is a Moran Number or not. Moran numbers are a subset of Harshad numbers.
A number N is a Moran number if N divided by the sum of its digits gives a prime number. For example some Moran numbers are 18, 21, 27, 42, 45 and so on.
Examples:
Input: N = 34
Output: No
Explanation:
34 is not a moran number because it is not completely divisible 7 (sum of its digits).
Input: N = 21
Output: Yes
Explanation:
21 is a moran number because 21 divided by the sum of its digits gives a prime number.
Approach: To solve the problem mentioned above we have to find the sum of digits of that number. Then find the quotient by dividing the number by the sum of its digits and check if the quotient is a prime then the given number is a Moran Number.
Below is the implementation of the above approach:
C++
// C++ implementation to check if // the number is Moran number #include <bits/stdc++.h> using namespace std; // Function to calculate digit sum int digSum( int a) { int sum = 0; while (a) { sum += a % 10; a = a / 10; } return sum; } // Function to check if number is prime bool isPrime( int r) { bool s = true ; for ( int i = 2; i * i <= r; i++) { if (r % i == 0) { s = false ; break ; } } return s; } // Function to check if // number is moran number void moranNo( int n) { int dup = n; // Calculate digit sum int sum = digSum(dup); // Check if n is completely // divisible by digit sum if (n % sum == 0) { // Calculate the quotient int c = n / sum; // Check if the number is prime if (isPrime(c)) { cout << "Yes" ; return ; } } cout << "No" << endl; } // Driver code int main() { int n = 21; moranNo(n); return 0; } |
Java
// Java implementation to check if // the number is Moran number import java.util.*; import java.lang.*; class GFG{ // Function to calculate digit sum static int digSum( int a) { int sum = 0 ; while (a != 0 ) { sum += a % 10 ; a = a / 10 ; } return sum; } // Function to check if number is prime static boolean isPrime( int r) { boolean s = true ; for ( int i = 2 ; i * i <= r; i++) { if (r % i == 0 ) { s = false ; break ; } } return s; } // Function to check if // number is moran number static void moranNo( int n) { int dup = n; // Calculate digit sum int sum = digSum(dup); // Check if n is completely // divisible by digit sum if (n % sum == 0 ) { // Calculate the quotient int c = n / sum; // Check if the number is prime if (isPrime(c)) { System.out.println( "Yes" ); return ; } } System.out.println( "No" ); } // Driver code public static void main(String[] args) { int n = 21 ; moranNo(n); } } // This code is contributed by offbeat |
Python3
# Python3 implementation to check if # the number is Moran number # Function to calculate digit sum def digSum(a): _sum = 0 while (a): _sum + = a % 10 a = a / / 10 return _sum # Function to check if number is prime def isPrime(r): s = True i = 2 while i * i < = r: if (r % i = = 0 ): s = False break i + = 1 return s # Function to check if # number is moran number def moranNo(n): dup = n # Calculate digit sum _sum = digSum(dup) # Check if n is completely # divisible by digit sum if (n % _sum = = 0 ): # Calculate the quotient c = n / / _sum # Check if the number is prime if (isPrime(c)): print ( "Yes" ) return print ( "No" ) # Driver code n = 21 moranNo(n) # This code is contributed by divyamohan123 |
C#
// C# implementation to check if // the number is Moran number using System; class GFG{ // Function to calculate digit sum static int digSum( int a) { int sum = 0; while (a != 0) { sum += a % 10; a = a / 10; } return sum; } // Function to check if number is prime static bool isPrime( int r) { bool s = true ; for ( int i = 2; i * i <= r; i++) { if (r % i == 0) { s = false ; break ; } } return s; } // Function to check if // number is moran number static void moranNo( int n) { int dup = n; // Calculate digit sum int sum = digSum(dup); // Check if n is completely // divisible by digit sum if (n % sum == 0) { // Calculate the quotient int c = n / sum; // Check if the number is prime if (isPrime(c)) { Console.Write( "Yes" ); return ; } } Console.Write( "No" ); } // Driver code public static void Main() { int n = 21; moranNo(n); } } // This code is contributed by Code_Mech |
Javascript
<script> // Javascript implementation to check if // the number is Moran number // Function to calculate digit sum function digSum(a) { let sum = 0; while (a) { sum += a % 10; a = Math.floor(a / 10); } return sum; } // Function to check if number is prime function isPrime(r) { let s = true ; for (let i = 2; i * i <= r; i++) { if (r % i == 0) { s = false ; break ; } } return s; } // Function to check if // number is moran number function moranNo(n) { let dup = n; // Calculate digit sum let sum = digSum(dup); // Check if n is completely // divisible by digit sum if (n % sum == 0) { // Calculate the quotient let c = n / sum; // Check if the number is prime if (isPrime(c)) { document.write( "Yes" ); return ; } } document.write( "No" + "<br>" ); } // Driver code let n = 21; moranNo(n); // This code is contributed by Mayank Tyagi </script> |
Yes
Time complexity: O(sqrt(n))
Auxiliary Space: O(1)
Please Login to comment...