# Check a large number is divisible by 16 or not

Given a number, the task is to check if a number is divisible by 16 or not. The input number may be large and it may not be possible to store even if we use long long int.

Examples:

Input  : n = 1128
Output : No

Input  : n = 11216
Output : Yes

Input  : n = 1124273542764284287
Output : No

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Since input number may be very large, we cannot use n % 16 to check if a number is divisible by 16 or not, especially in languages like C/C++. The idea is based on following fact.

A number is divisible by 16 if number formed
by last four digits of it is divisible by 16.

Illustration:

For example, let us consider 769616
Number formed by last four digits = 9616
Since 9522 is divisible by 16, answer is YES.

How does this work?

Let us consider 76952, we can write it as
76942 = 7*10000 + 6*1000 + 9*100 + 5*10 + 2

The proof is based on below observation:
Remainder of 10i divided by 16 is 0 if i greater
than or equal to four. Note that 10000,
100000,... etc lead to remainder 0 when divided by 16.

So remainder of "7*10000 + 6*1000 + 9*100 +
5*10 + 2" divided by 16 is equivalent to remainder
of following :
0 + 6*1000 + 9*100 + 5*10 + 2 = 6952
Therefore we can say that the whole number is
divisible by 16 if 6952 is divisible by 16.

## C++

 // C++ program to find if a number // is divisible by 16 or not #include using namespace std;    // Function to find that // number divisible by 16 or not bool check(string str) {     int n = str.length();        // Empty string     if (n == 0 && n == 1)         return false;        // If there is double digit     if (n == 2)         return (((str[n-2]-'0')*10 +                  (str[n-1]-'0'))%16 == 0);        // If there is triple digit     if(n == 3)          return ( ((str[n-3]-'0')*100 +                    (str[n-2]-'0')*10 +                    (str[n-1]-'0'))%16 == 0);           // If number formed by last four     // digits is divisible by 16.     int last = str[n-1] - '0';     int second_last = str[n-2] - '0';     int third_last = str[n-3] - '0';     int fourth_last = str[n-4] - '0';     return ((fourth_last*1000 + third_last*100 +              second_last*10 + last) % 16 == 0); }    // Driver code int main() {     string str = "769528";     check(str)?  cout << "Yes" : cout << "No ";     return 0; }

## Java

 // Java program to find if a number // is divisible by 16 or not import java.io.*;    class GFG {     // Function to find that     // number divisible by 16 or not     static boolean check(String str)     {         int n = str.length();                 // Empty string         if (n == 0 && n == 1)             return false;                 // If there is double digit         if (n == 2)             return (((str.charAt(n-2)-'0')*10 +                      (str.charAt(n-1)-'0'))%16 == 0);                 // If there is triple digit         if(n == 3)              return ( ((str.charAt(n-3)-'0')*100 +                        (str.charAt(n-2)-'0')*10 +                        (str.charAt(n-1)-'0'))%16 == 0);                         // If number formed by last         // four digits is divisible by 16.         int last = str.charAt(n-1) - '0';         int second_last = str.charAt(n-2) - '0';         int third_last = str.charAt(n-3) - '0';         int fourth_last = str.charAt(n-4) - '0';         return ((fourth_last*1000 + third_last*100                  + second_last*10 + last) % 16 == 0);     }             // Driver code     public static void main(String args[])     {         String str = "769528";         if(check(str))             System.out.println("Yes");         else             System.out.println("No ");     } }    // This code is contributed by Nikita Tiwari.

## Python3

 # Python 3 program to find # if a number is divisible # by 16 or not    # Function to find that # number divisible by # 16 or not def check(st) :     n = len(st)             # Empty string     if (n == 0 and n == 1) :         return False         # If there is double digit     if (n == 2) :         return ((int)(st[n-2])*10 +                 ((int)(st[n-1])%16 == 0))         # If there is triple digit     if(n == 3) :         return ( ((int)(st[n-3])*100 +                    (int)(st[n-2])*10 +                    (int)(st[n-1]))%16 == 0)             # If number formed by last     # four digits is divisible     # by 16.     last = (int)(st[n-1])     second_last = (int)(st[n-2])     third_last = (int)(st[n-3])     fourth_last = (int)(st[n-4])     return ((fourth_last*1000 + third_last*100             + second_last*10 + last) % 16 == 0)       # Driver code st = "769528" if(check(st)) :     print("Yes") else :     print("No")           # This code is conributed by Nikita Tiwari.

## C#

 // C# program to find if a number // is divisible by 16 or not using System;    class GFG {            // Function to find that number      // divisible by 16 or not     static bool check(String str)     {         int n = str.Length;                // Empty string         if (n == 0 && n == 1)             return false;                // If there is double digit         if (n == 2)             return (((str[n - 2] - '0') * 10 +                 (str[n - 1] - '0')) % 16 == 0);                // If there is triple digit         if(n == 3)             return (((str[n - 3] - '0') * 100 +                      (str[n - 2] - '0') * 10 +                      (str[n - 1] - '0')) % 16 == 0);                       // If number formed by last         // four digits is divisible by 16.         int last = str[n - 1] - '0';         int second_last = str[n - 2] - '0';         int third_last = str[n - 3] - '0';         int fourth_last = str[n - 4] - '0';         return ((fourth_last * 1000 + third_last * 100             + second_last * 10 + last) % 16 == 0);     }            // Driver code     public static void Main()     {         String str = "769528";         if(check(str))             Console.Write("Yes");         else             Console.Write("No ");     } }    // This code is contributed by Nitin Mittal.

## PHP



Output:

No

This article is contributed by Danish_Raza. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : nitin mittal, jit_t

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.