Given two strings **S** and **T** representing non-negative rational numbers, the task is to check if the values of **S** and **T** are equal or not. If found to be true, then print **“YES”**. Otherwise, print **“NO”**.

**Note:** Any rational number can be represented in one of the following three ways:

**<IntegerPart>**(e.g. 0, 12, 123)**<IntegerPart><.><NonRepeatingPart>**(e.g. 0.5, 1., 2.12, 2.0001)**<IntegerPart><.><NonRepeatingPart><(><RepeatingPart><)>**(e.g. 0.1(6), 0.9(9), 0.00(1212))

**Examples:**

Input:S = “0.(52)”, T = “0.5(25)”Output:YESExplanation:

The rational number “0.(52)” can be represented as 0.52525252…

The rational number “0.5(25)” can be represented as 0.525252525….

Therefore, the required output is “YES”.

Input:S = “0.9(9)”, T = “1.”Output:YESExplanation:

The rational number “0.9(9)” can be represented as 0.999999999…, it is equal to 1.

The rational number “1.” can be represented as the number 1.

Therefore, the required output is “YES”.

**Approach:** The idea is to convert the rational numbers into fractions and then check if fractions of both the rational numbers are equal or not. If found to be true, then print **“YES”**. Otherwise, print **“NO”**. Following are the observations:

The repeating portion of a decimal expansion is conventionally denoted within a pair of round brackets.

For example: 1 / 6 = 0.16666666… = 0.1(6) = 0.1666(6) = 0.166(66)

Both 0.1(6) or 0.1666(6) or 0.166(66) are correct representations of 1 / 6.

Any rational numbers can be converted into fractions based on the following observations:

Let x = 0.5(25) —> (1)

Integer part = 0, Non-repeating part = 5, Repeating part = 25

Multiply both sides of equation (1) by 10 raised to the power of length of non-repeating part, i.e. 10 * x = 5.(25) —> (2)

Multiply both sides of equation (1) by 10 raised to the power of (length of non-repeating part + length of repeating part), 1000 * x = 525.(25) —> (3)

Subtract equation (2) from equation (3)

1000 * x – 10 * x = 525.(25)-5.(25)

990 * x = 520

⇒ x = 520 / 990

Follow the steps below to solve the problem:

- Convert both the rational numbers into fractions using the above observations.
- Check if both the fractions of the numbers are equal or not. If found to be true, then print
**“YES”**. - Otherwise, print
**“NO”**.

Below is the implementation of the above approach:

## Java

`// Java program to implement` `// the above approach` `import` `java.io.*;` `import` `java.util.*;` ` ` `class` `GFG {` ` ` ` ` `// Function to check if the string S and T` ` ` `// are equal or not` ` ` `public` `static` `boolean` `isRationalEqual(String s,` ` ` `String t)` ` ` `{` ` ` ` ` `// Stores the fractional part of s` ` ` `Fraction f1 = Rational.parse(s).toFraction();` ` ` ` ` `// Stores the fractional part of t` ` ` `Fraction f2 = Rational.parse(t).toFraction();` ` ` ` ` `// If the condition satisfies, returns true` ` ` `// otherwise return false` ` ` `return` `f1.p * f2.q == f2.p * f1.q;` ` ` `}` ` ` ` ` `// Rational class having integer, non-repeating` ` ` `// and repeating part of the number` ` ` `public` `static` `class` `Rational {` ` ` `private` `final` `String integer, nonRepeating,` ` ` `repeating;` ` ` ` ` `// Constructor function to initialize` ` ` `// the object of the class` ` ` `private` `Rational(String integer,` ` ` `String nonRepeating,` ` ` `String repeating)` ` ` `{` ` ` ` ` `// Stores integer part` ` ` `this` `.integer = integer;` ` ` ` ` `// Stores non repeating part` ` ` `this` `.nonRepeating = nonRepeating;` ` ` ` ` `// Stores repeating part` ` ` `this` `.repeating = repeating;` ` ` `}` ` ` ` ` `// Function to split the string into` ` ` `// integer, repeating & non-repeating part` ` ` `public` `static` `Rational parse(String s)` ` ` `{` ` ` ` ` `// Split s into parts` ` ` `String[] parts = s.split(` `"[.()]"` `);` ` ` ` ` `return` `new` `Rational(` ` ` `parts.length >= ` `1` `? parts[` `0` `] : ` `""` `,` ` ` `parts.length >= ` `2` `? parts[` `1` `] : ` `""` `,` ` ` `parts.length >= ` `3` `? parts[` `2` `] : ` `""` `);` ` ` `}` ` ` ` ` `// Function to convert the string` ` ` `// into fraction` ` ` `public` `Fraction toFraction()` ` ` `{` ` ` ` ` `long` `a = tenpow(nonRepeating.length());` ` ` `long` `i = Long.parseLong(integer + nonRepeating);` ` ` ` ` `// If there is no repeating part, then` ` ` `// form a new fraction of the form i/a` ` ` `if` `(repeating.length() == ` `0` `) {` ` ` `return` `new` `Fraction(i, a);` ` ` `}` ` ` ` ` `// Otherwise` ` ` `else` `{` ` ` `long` `b = tenpow(nonRepeating.length()` ` ` `+ repeating.length());` ` ` ` ` `long` `j = Long.parseLong(` ` ` `integer + nonRepeating + repeating);` ` ` ` ` `// Form the new Fraction and return` ` ` `return` `new` `Fraction(j - i, b - a);` ` ` `}` ` ` `}` ` ` ` ` `public` `String toString()` ` ` `{` ` ` `return` `String.format(` `"%s.%s(%s)"` `, integer,` ` ` `nonRepeating, repeating);` ` ` `}` ` ` `}` ` ` ` ` `// Fraction class having numerator as p` ` ` `// and denominator as q` ` ` `public` `static` `class` `Fraction {` ` ` `private` `final` `long` `p, q;` ` ` ` ` `// Constructor function to initialize` ` ` `// the object of the class` ` ` `private` `Fraction(` `long` `p, ` `long` `q)` ` ` `{` ` ` `this` `.p = p;` ` ` `this` `.q = q;` ` ` `}` ` ` ` ` `public` `String toString()` ` ` `{` ` ` `return` `String.format(` `"%d/%d"` `, p, q);` ` ` `}` ` ` `}` ` ` ` ` `// Function to find 10 raised` ` ` `// to power of x` ` ` `public` `static` `long` `tenpow(` `int` `x)` ` ` `{` ` ` `assert` `x >= ` `0` `;` ` ` `long` `r = ` `1` `;` ` ` `while` `(--x >= ` `0` `) {` ` ` `r *= ` `10` `;` ` ` `}` ` ` `return` `r;` ` ` `}` ` ` ` ` `// Driver Code` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` ` ` `// Given S and T` ` ` `String S = ` `"0.(52)"` `, T = ` `"0.5(25)"` `;` ` ` ` ` `// Function Call` ` ` `if` `(isRationalEqual(S, T)) {` ` ` `System.out.println(` `"YES"` `);` ` ` `}` ` ` `else` `{` ` ` ` ` `System.out.println(` `"NO"` `);` ` ` `}` ` ` ` ` `// Print result` ` ` `}` `}` |

**Output:**

YES

**Time Complexity:** O(N), where N is the maximum length of S and T**Auxiliary Space:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**