Check if the sum of primes is divisible by any prime from the array

Given an array arr[], the task is to check whether the sum of primes in the array is divisible by any of the primes in the array. If it is then print YES, otherwise print NO.

Examples:

Input: arr[] = {2, 3}
Output: NO
Primes: 2, 3
Sum = 2 + 3 = 5 which is neither divisible by 2 nor 3

Input: arr[] = {1, 2, 3, 4, 5}
Output: YES
2 + 3 + 5 = 10 is divisible by 2 as well as 5

Approach: The idea is to generate all primes upto maximum element from the array using Sieve of Eratosthenes.

  • Traverse the array and check if the current element is prime or not. If it is prime then update sum = sum + arr[i].
  • Traverse the array again and check if sum % arr[i] = 0 where arr[i] is prime. If it is then print YES. Otherwise print NO in the end.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to check if sum of primes from an array
// is divisible by any of the primes from the same array
#include <bits/stdc++.h>
using namespace std;
  
// Function to print "YES" if sum of primes from an array
// is divisible by any of the primes from the same array
void SumDivPrime(int A[], int n)
{
    int max_val = *(std::max_element(A, A + n)) + 1;
  
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    vector<bool> prime(max_val + 1, true);
  
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p <= max_val; p++) {
  
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
  
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
  
    int sum = 0;
  
    // Traverse through the array
    for (int i = 0; i < n; ++i) {
        if (prime[A[i]])
            sum += A[i];
    }
  
    for (int i = 0; i < n; ++i) {
        if (prime[A[i]] && sum % A[i] == 0) {
            cout << "YES";
            return;
        }
    }
  
    cout << "NO";
}
  
// Driver program
int main()
{
    int A[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(A) / sizeof(A[0]);
  
    SumDivPrime(A, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check if sum of primes from an array 
// is divisible by any of the primes from the same array 
class Solution
{
    //returns the maximum value
static int max_element(int A[])
{
    int max=Integer.MIN_VALUE;
      
    for(int i=0;i<A.length;i++)
        if(max<A[i])
            max=A[i];
      
    return max;
}
  
  
// Function to print "YES" if sum of primes from an array 
// is divisible by any of the primes from the same array 
static void SumDivPrime(int A[], int n) 
    int max_val = (max_element(A)) + 1
  
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS 
    // THAN OR EQUAL TO max_val 
    // Create a boolean array "prime[0..n]". A 
    // value in prime[i] will finally be false 
    // if i is Not a prime, else true. 
    boolean prime[]=new boolean[max_val+1]; 
      
    //initilize the array
    for(int i=0;i<=max_val;i++)
    prime[i]=true;
  
    // Remaining part of SIEVE 
    prime[0] = false
    prime[1] = false
    for (int p = 2; p * p <= max_val; p++) { 
  
        // If prime[p] is not changed, then 
        // it is a prime 
        if (prime[p] == true) { 
  
            // Update all multiples of p 
            for (int i = p * 2; i <= max_val; i += p) 
                prime[i] = false
        
    
  
    int sum = 0
  
    // Traverse through the array 
    for (int i = 0; i < n; ++i) { 
        if (prime[A[i]]) 
            sum += A[i]; 
    
  
    for (int i = 0; i < n; ++i) { 
        if (prime[A[i]] && sum % A[i] == 0) { 
            System.out.println( "YES"); 
            return
        
    
  
    System.out.println("NO"); 
  
// Driver program 
public static void main(String args[]) 
    int A[] = { 1, 2, 3, 4, 5 }; 
    int n = A.length; 
  
    SumDivPrime(A, n); 
}
//contributed by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check if sum of 
# primes from an array is divisible
# by any of the primes from the same array
import math
  
# Function to print "YES" if sum of primes 
# from an array is divisible by any of the 
# primes from the same array
def SumDivPrime(A, n):
  
    max_val = max(A) + 1
  
    # USE SIEVE TO FIND ALL PRIME NUMBERS 
    # LESS THAN OR EQUAL TO max_val
    # Create a boolean array "prime[0..n]". 
    # A value in prime[i] will finally be 
    # false if i is Not a prime, else true.
    prime = [True] * (max_val + 1)
  
    # Remaining part of SIEVE
    prime[0] = False
    prime[1] = False
    for p in range(2, int(math.sqrt(max_val)) + 1):
  
        # If prime[p] is not changed, 
        # then it is a prime
        if prime[p] == True :
  
            # Update all multiples of p
            for i in range(2 * p, max_val + 1, p):
                prime[i] = False
  
    sum = 0
  
    # Traverse through the array
    for i in range(0, n):
        if prime[A[i]]:
            sum += A[i]
      
    for i in range(0, n):
        if prime[A[i]] and sum % A[i] == 0:
            print("YES")
            return
          
    print("NO")
  
# Driver Code
A = [ 1, 2, 3, 4, 5 ]
n = len(A)
  
SumDivPrime(A, n)
  
# This code is contributed 
# by saurabh_shukla

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check if sum of primes
// from an array is divisible by any of 
// the primes from the same array 
class GFG 
  
//returns the maximum value 
static int max_element(int[] A) 
    int max = System.Int32.MinValue; 
      
    for(int i = 0; i < A.Length; i++) 
        if(max < A[i]) 
            max = A[i]; 
      
    return max; 
  
  
// Function to print "YES" if sum of 
// primes from an array  is divisible 
// by any of the primes from the same array 
static void SumDivPrime(int[] A, int n) 
    int max_val = (max_element(A)) + 1; 
  
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS 
    // THAN OR EQUAL TO max_val 
    // Create a boolean array "prime[0..n]". A 
    // value in prime[i] will finally be false 
    // if i is Not a prime, else true. 
    bool[] prime=new bool[max_val+1]; 
      
    //initilize the array 
    for(int i = 0; i <= max_val; i++) 
        prime[i] = true
  
    // Remaining part of SIEVE 
    prime[0] = false
    prime[1] = false
    for (int p = 2; p * p <= max_val; p++) 
    
  
        // If prime[p] is not changed, then 
        // it is a prime 
        if (prime[p] == true
        
  
            // Update all multiples of p 
            for (int i = p * 2; i <= max_val; i += p) 
                prime[i] = false
        
    
    int sum = 0; 
  
    // Traverse through the array 
    for (int i = 0; i < n; ++i)
    
        if (prime[A[i]]) 
            sum += A[i]; 
    
  
    for (int i = 0; i < n; ++i) 
    
        if (prime[A[i]] && sum % A[i] == 0) 
        
            System.Console.WriteLine( "YES"); 
            return
        
    
    System.Console.WriteLine("NO"); 
  
// Driver code
public static void Main() 
    int []A = { 1, 2, 3, 4, 5 }; 
    int n = A.Length; 
    SumDivPrime(A, n); 
  
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to check if sum of primes 
// from an array is divisible by any of 
// the primes from the same array 
  
// Function to print "YES" if sum of primes 
// from an array is divisible by any of the
// primes from the same array 
function SumDivPrime($A, $n
    $max_val = max($A);
  
    // USE SIEVE TO FIND ALL PRIME NUMBERS 
    // LESS THAN OR EQUAL TO max_val 
    // Create a boolean array "prime[0..n]". A 
    // value in prime[i] will finally be false 
    // if i is Not a prime, else true.
    $prime = array_fill(1, $max_val + 1, true);
      
    // Remaining part of SIEVE 
    $prime[0] = false; 
    $prime[1] = false; 
    for ($p = 2; $p * $p <= $max_val; $p++) 
    
  
        // If prime[p] is not changed, then 
        // it is a prime 
        if ($prime[$p] == true) 
        
  
            // Update all multiples of p 
            for ($i = $p * 2; 
                 $i <= $max_val; $i += $p
                $prime[$i] = false; 
        
    
  
    $sum = 0; 
  
    // Traverse through the array 
    for ($i = 0; $i < $n; ++$i
    
        if ($prime[$A[$i]]) 
            $sum += $A[$i]; 
    
  
    for ($i = 0; $i < $n; ++$i)
    
        if ($prime[$A[$i]] && 
            $sum % $A[$i] == 0) 
        
            echo "YES"
            return
        
    
  
    echo "NO"
  
// Driver Code
$A = array( 1, 2, 3, 4, 5 ); 
$n = sizeof($A) ;
  
SumDivPrime($A, $n); 
  
// This code is contributed by Ryuga
?>

chevron_right


Output:

YES


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.