Skip to content
Related Articles

Related Articles

Count of primes below N which can be expressed as the sum of two primes
  • Last Updated : 16 Apr, 2021

Given an integer N, the task is to find the count of all the primes below N which can be expressed as the sum of two primes.
Examples: 
 

Input: N = 6 
Output:
5 is the only such prime below 6. 
2 + 3 = 5.
Input: N = 11 
Output:
 

 

Approach: Create an array prime[] where prime[i] will store whether i is prime or not using Sieve of Eratosthenes. Now for every prime from the range [1, N – 1], check whether it can be expressed as the sum of two primes using the approach discussed here.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 100005;
bool prime[MAX];
 
// Function for Sieve of Eratosthenes
void SieveOfEratosthenes()
{
    memset(prime, true, sizeof(prime));
 
    // false here indicates
    // that it is not prime
    prime[0] = false;
    prime[1] = false;
 
    for (int p = 2; p * p <= MAX; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p]) {
 
            // Update all multiples of p,
            // set them to non-prime
            for (int i = p * 2; i <= MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the count of primes
// less than or equal to n which can be
// expressed as the sum of two primes
int countPrimes(int n)
{
    SieveOfEratosthenes();
 
    // To store the required count
    int cnt = 0;
 
    for (int i = 2; i < n; i++) {
 
        // If the integer is prime and it
        // can be expressed as the sum of
        // 2 and a prime number
        if (prime[i] && prime[i - 2])
            cnt++;
    }
 
    return cnt;
}
 
// Driver code
int main()
{
    int n = 11;
 
    cout << countPrimes(n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
static int MAX = 100005;
static boolean []prime = new boolean[MAX];
 
// Function for Sieve of Eratosthenes
static void SieveOfEratosthenes()
{
 
    for (int i = 0; i < MAX; i++)
        prime[i] = true;
 
    // false here indicates
    // that it is not prime
    prime[0] = false;
    prime[1] = false;
 
    for (int p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p])
        {
            // Update all multiples of p,
            // set them to non-prime
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the count of primes
// less than or equal to n which can be
// expressed as the sum of two primes
static int countPrimes(int n)
{
    SieveOfEratosthenes();
 
    // To store the required count
    int cnt = 0;
 
    for (int i = 2; i < n; i++)
    {
        // If the integer is prime and it
        // can be expressed as the sum of
        // 2 and a prime number
        if (prime[i] && prime[i - 2])
            cnt++;
    }
    return cnt;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 11;
 
    System.out.print(countPrimes(n));
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 implementation of the approach
MAX = 100005
prime = [True for i in range(MAX)]
 
# Function for Sieve of Eratosthenes
def SieveOfEratosthenes():
 
    # False here indicates
    # that it is not prime
    prime[0] = False
    prime[1] = False
 
    for p in range(MAX):
 
        if(p * p > MAX):
            break
 
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p]):
 
            # Update all multiples of p,
            # set them to non-prime
            for i in range(2 * p, MAX, p):
                prime[i] = False
 
# Function to return the count of primes
# less than or equal to n which can be
# expressed as the sum of two primes
def countPrimes(n):
    SieveOfEratosthenes()
 
    # To store the required count
    cnt = 0
 
    for i in range(2, n):
 
        # If the integer is prime and it
        # can be expressed as the sum of
        # 2 and a prime number
        if (prime[i] and prime[i - 2]):
            cnt += 1
 
    return cnt
 
# Driver code
n = 11
 
print(countPrimes(n))
 
# This code is contributed by Mohit Kumar

C#




    // C# implementation of the approach
using System;
 
class GFG
{
static int MAX = 100005;
static bool []prime = new bool[MAX];
 
// Function for Sieve of Eratosthenes
static void SieveOfEratosthenes()
{
    for (int i = 0; i < MAX; i++)
        prime[i] = true;
 
    // false here indicates
    // that it is not prime
    prime[0] = false;
    prime[1] = false;
 
    for (int p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p])
        {
            // Update all multiples of p,
            // set them to non-prime
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to return the count of primes
// less than or equal to n which can be
// expressed as the sum of two primes
static int countPrimes(int n)
{
    SieveOfEratosthenes();
 
    // To store the required count
    int cnt = 0;
 
    for (int i = 2; i < n; i++)
    {
        // If the integer is prime and it
        // can be expressed as the sum of
        // 2 and a prime number
        if (prime[i] && prime[i - 2])
            cnt++;
    }
    return cnt;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 11;
 
    Console.Write(countPrimes(n));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
// javascript implementation of the approach   
var MAX = 100005;
var prime = new Array(MAX).fill(false);
 
    // Function for Sieve of Eratosthenes
    function SieveOfEratosthenes()
    {
        for (i = 0; i < MAX; i++)
            prime[i] = true;
 
        // false here indicates
        // that it is not prime
        prime[0] = false;
        prime[1] = false;
 
        for (p = 2; p * p < MAX; p++)
        {
         
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p])
            {
             
                // Update all multiples of p,
                // set them to non-prime
                for (i = p * 2; i < MAX; i += p)
                    prime[i] = false;
            }
        }
    }
 
    // Function to return the count of primes
    // less than or equal to n which can be
    // expressed as the sum of two primes
    function countPrimes(n)
    {
        SieveOfEratosthenes();
 
        // To store the required count
        var cnt = 0;
        for (i = 2; i < n; i++)
        {
         
            // If the integer is prime and it
            // can be expressed as the sum of
            // 2 and a prime number
            if (prime[i] && prime[i - 2])
                cnt++;
        }
        return cnt;
    }
 
    // Driver code
        var n = 11;
        document.write(countPrimes(n));
 
// This code is contributed by todaysgaurav
</script>
Output: 
2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA




My Personal Notes arrow_drop_up
Recommended Articles
Page :