Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Check if rearranging Array elements can form a Palindrome or not

  • Difficulty Level : Medium
  • Last Updated : 25 Aug, 2021

Given a positive integer array arr of size N, the task is to check if number formed, from any arrangement of array elements, form a palindrome or not.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr = [1, 2, 3, 1, 2]
Output: Yes
Explanation: The elements of a given array can be rearranged as 1, 2, 3, 2, 1. 
Since 12321 is a palindrome, so output will be “Yes”



Input: arr = [1, 2, 3, 4, 1]
Output: No
Explanation: The elements of a given array cannot be rearranged to form a palindrome within all the possible permutations. So the output will be “No”

 

Approach: Given problem can be solved using map to store the frequency of array elements

  • Store the frequency of all array elements
  • Check if frequency of each element is even
  • For element whose frequency is odd, if there is only one such element, then print Yes. Else print No.

Below is the implementation of the above approach:

C++14




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 256
 
// Function to check whether elements of
// an array can form a palindrome
bool can_form_palindrome(int arr[], int n)
{
    // create an empty string
    // to append elements of an array
    string str = "";
 
    // append each element to the string str to form
    // a string so that we can solve it in easy way
    for (int i = 0; i < n; i++) {
        str += arr[i];
    }
 
    // Create a freq array and initialize all
    // values as 0
    int freq[MAX] = { 0 };
 
    // For each character in formed string,
    // increment freq in the corresponding
    // freq array
    for (int i = 0; str[i]; i++) {
        freq[str[i]]++;
    }
    int count = 0;
 
    // Count odd occurring characters
    for (int i = 0; i < MAX; i++) {
        if (freq[i] & 1) {
            count++;
        }
        if (count > 1) {
            return false;
        }
    }
 
    // Return true if odd count is 0 or 1,
    return true;
}
// Drive code
int main()
{
    int arr[] = { 1, 2, 3, 1, 2 };
    int n = sizeof(arr) / sizeof(int);
    can_form_palindrome(arr, n)
        ? cout << "YES"
        : cout << "NO";
    return 0;
}

Java




// Java implementation of the above approach
import java.io.*;
import java.util.Arrays;
 
class GFG{
 
  static int MAX = 256;
 
  // Function to check whether elements of
  // an array can form a palindrome
  static boolean can_form_palindrome(int []arr, int n)
  {
 
    // create an empty string
    // to append elements of an array
    String str = "";
 
    // append each element to the string str to form
    // a string so that we can solve it in easy way
    for (int i = 0; i < n; i++) {
      str += arr[i];
    }
 
    // Create a freq array and initialize all
    // values as 0
    int freq[] = new int[MAX];
    Arrays.fill(freq,0);
 
    // For each character in formed string,
    // increment freq in the corresponding
    // freq array
    for (int i = 0; i<str.length(); i++) {
      freq[str.charAt(i)]++;
    }
    int count = 0;
 
    // Count odd occurring characters
    for (int i = 0; i < MAX; i++) {
      if ((freq[i] & 1)!=0) {
        count++;
      }
      if (count > 1) {
        return false;
      }
    }
 
    // Return true if odd count is 0 or 1,
    return true;
  }
 
  // Drive code
  public static void main (String[] args)
  {
    int []arr = { 1, 2, 3, 1, 2 };
    int n = arr.length;
    if(can_form_palindrome(arr, n))
      System.out.println("YES");
    else
      System.out.println("NO");
  }
}
 
// This code is contributed by shivanisinghss2110

Python3




# python implementation of the above approach
 
# Function to check whether elements of
# an array can form a palindrome
def can_form_palindrome(arr, n):
    MAX = 256
    # create an empty string
    # to append elements of an array
    s = ""
 
    # append each element to the string str to form
    # a string so that we can solve it in easy way
    for i in range(n) :
        s = s + str(arr[i])
 
    # Create a freq array and initialize all
    # values as 0
    freq = [0]*MAX
 
    # For each character in formed string,
    # increment freq in the corresponding
    # freq array
    for i in range(N) :
        freq[arr[i]]=freq[arr[i]]+1
     
    count = 0
 
    # Count odd occurring characters
    for i in range(MAX) :
        if (freq[i] & 1) :
            count=count+1
        if (count > 1) :
            return False
         
    # Return true if odd count is 0 or 1,
    return True
   
# Driver Code
if __name__ ==  "__main__":
    arr = [ 1, 2, 3, 1, 2 ]
    N = len(arr)
     
    # Function Call
    if(can_form_palindrome(arr, N)):
        print("YES")
    else:
        print("NO")
                    
 # This code is contributed by anudeep23042002

C#




// C# implementation of the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
static int MAX = 256;
 
// Function to check whether elements of
// an array can form a palindrome
static bool can_form_palindrome(int []arr, int n)
{
    // create an empty string
    // to append elements of an array
    string str = "";
 
    // append each element to the string str to form
    // a string so that we can solve it in easy way
    for (int i = 0; i < n; i++) {
        str += arr[i];
    }
 
    // Create a freq array and initialize all
    // values as 0
    int []freq = new int[MAX];
    Array.Clear(freq,0,MAX);
 
    // For each character in formed string,
    // increment freq in the corresponding
    // freq array
    for (int i = 0; i<str.Length; i++) {
         freq[str[i]]++;
    }
    int count = 0;
 
    // Count odd occurring characters
    for (int i = 0; i < MAX; i++) {
        if ((freq[i] & 1)!=0) {
            count++;
        }
        if (count > 1) {
            return false;
        }
    }
 
    // Return true if odd count is 0 or 1,
    return true;
}
   
// Drive code
public static void Main()
{
    int []arr = { 1, 2, 3, 1, 2 };
    int n = arr.Length;
    if(can_form_palindrome(arr, n))
       Console.Write("YES");
    else
        Console.Write("NO");
}
}
 
// This code is contributed by SURENDRA_GANGWAR.

Javascript




<script>
        // JavaScript Program to implement
        // the above approach
        let MAX = 256
 
        // Function to check whether elements of
        // an array can form a palindrome
        function can_form_palindrome(arr, n)
        {
         
            // create an empty string
            // to append elements of an array
            let str = "";
 
            // append each element to the string str to form
            // a string so that we can solve it in easy way
            for (let i = 0; i < n; i++) {
                str += toString(arr[i]);
            }
 
            // Create a freq array and initialize all
            // values as 0
            let freq = new Array(n).fill(0);
 
            // For each character in formed string,
            // increment freq in the corresponding
            // freq array
            for (let i = 0; i < str.length; i++) {
                freq[str.charCodeAt(i)]++;
            }
            let count = 0;
 
            // Count odd occurring characters
            for (let i = 0; i < MAX; i++) {
                if (freq[i] & 1) {
                    count++;
                }
                if (count > 1) {
                    return false;
                }
            }
 
            // Return true if odd count is 0 or 1,
            return true;
        }
         
        // Drive code
        let arr = [1, 2, 3, 1, 2];
        let n = arr.length;
        can_form_palindrome(arr, n)
            ? document.write("YES")
            : document.write("NO");
 
// This code is contributed by Potta Lokesh
    </script>
Output
YES

Time Complexity: O(N)
Auxiliary Space: O(N)

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :