Given an array arr[] of size N, the task is to check if it is possible to sort the array using the following operations:
- Swap(arr[i], arr[j]), if i & 1 = 1 and j & 1 = 1.
- Swap(arr[i], arr[j]), if i & 1 = 0 and j & 1 = 0.
Examples:
Input: arr[] = {3, 5, 1, 2, 6}
Output: Yes
Explanation:
Swap(3, 1) –> { 1, 5, 3, 2, 6 }
Swap(5, 2) –> { 1, 2, 3, 5, 6 }Input: arr[] = {3, 1, 5, 2, 6}
Output: No
Naive Approach: The idea is to find the minimum element for the even indexes or odd indexes and swap it from the current element if the index of the current element is even or odd respectively.
- Traverse the array arr[] and perform the following operations:
- If the current index is even, traverse the remaining even indices.
- Find the minimum element present in the even-indexed elements.
- Swap the minimum with the current array element.
- Repeat the above steps for all odd-indexed elements also.
- After completing the above operations, if the array is sorted, then it is possible to sort the array.
- Otherwise, it is not possible to sort the array.
Below is the implementation of the above approach:
Python3
# Python # Function to check if array # can be sorted or not def isSorted(arr): for i in range ( len (arr) - 1 ): if arr[i]>arr[i + 1 ]: return False return True # Function to check if given # array can be sorted or not def sortPoss(arr): # Traverse the array for i in range ( len (arr)): idx = - 1 minVar = arr[i] # Traverse remaining elements # at indices separated by 2 for j in range (i, len (arr), 2 ): # If current element # is the minimum if arr[j]<minVar: minVar = arr[j] idx = j # If any smaller minimum exists if idx ! = - 1 : # Swap with current element arr[i], arr[idx] = arr[idx], arr[i] # If array is sorted if isSorted(arr): return True # Otherwise else : return False # Driver Code # Given array arr = [ 3 , 5 , 1 , 2 , 6 ] print (sortPoss(arr)) |
True
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: The idea is to check if utilize the fact that we can arrange all the even indexed and odd indexed elements the way we want to use the swap operations.
- Initialize an array, say dupArr[], to store the contents of the given array.
- Sort the array dupArr[].
- Check if all even-indexed elements in the original array are the same as the even-indexed elements in dupArr[].
- If found to be true, then sorting is possible. Otherwise, sorting is not possible.
Below is the implementation of the above approach:
Python3
# Python Program to implement # the above approach # Function to check if array can # be sorted by given operations def sortPoss(arr): # Copy contents # of the array dupArr = list (arr) # Sort the duplicate array dupArr.sort() evenOrg = [] evenSort = [] # Traverse the array for i in range ( 0 , len (arr), 2 ): # Append even-indexed elements # of the original array evenOrg.append(arr[i]) # Append even-indexed elements # of the duplicate array evenSort.append(dupArr[i]) # Sort the even-indexed elements evenOrg.sort() evenSort.sort() # Return true if even-indexed # elements are identical return evenOrg = = evenSort # Driver Code # Given array arr = [ 3 , 5 , 1 , 2 , 6 ] print (sortPoss(arr)) |
True
Time Complexity: O(N*log(N))
Auxiliary Space: O(N)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.