# Check if it is possible to move from (0, 0) to (X, Y) in exactly K steps

Given a point (X, Y) in a 2-D plane and an integer K, the task is to check whether it is possible to move from (0, 0) to the given point (X, Y) in exactly K moves. In a single move, the positions that are reachable from (X, Y) are (X, Y + 1), (X, Y – 1), (X + 1, Y) and (X – 1, Y).

Examples:

Input: X = 0, Y = 0, K = 2
Output: Yes
Move 1: (0, 0) -> (0, 1)
Move 2: (0, 1) -> (0, 0)

Input: X = 5, Y = 8, K = 20
Output: No

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: It is clear that the shortest path to reach (X, Y) from (0, 0) will be minMoves = (|X| + |Y|). So, if K < minMoves then it is impossible to reach (X, Y) but if K ≥ minMoves then after reaching (X, Y) in minMoves number of moves the remaining (K – minMoves) number of moves have to be even in order to remain at that point for the rest of the moves.
So it is possible to reach (X, Y) from (0, 0) only if K ≥ (|X| + |Y|) and (K – (|X| + |Y|)) % 2 = 0.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function that returns true if it is ` `// possible to move from (0, 0) to ` `// (x, y) in exactly k moves ` `bool` `isPossible(``int` `x, ``int` `y, ``int` `k) ` `{ ` `    ``// Minimum moves required ` `    ``int` `minMoves = ``abs``(x) + ``abs``(y); ` ` `  `    ``// If possible ` `    ``if` `(k >= minMoves && (k - minMoves) % 2 == 0) ` `        ``return` `true``; ` ` `  `    ``return` `false``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `x = 5, y = 8, k = 20; ` ` `  `    ``if` `(isPossible(x, y, k)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach  ` `class` `GFG ` `{ ` `     `  `    ``// Function that returns true if it is  ` `    ``// possible to move from (0, 0) to  ` `    ``// (x, y) in exactly k moves  ` `    ``static` `boolean` `isPossible(``int` `x, ``int` `y, ``int` `k)  ` `    ``{  ` `        ``// Minimum moves required  ` `        ``int` `minMoves = Math.abs(x) + Math.abs(y);  ` `     `  `        ``// If possible  ` `        ``if` `(k >= minMoves && (k - minMoves) % ``2` `== ``0``)  ` `            ``return` `true``;  ` `     `  `        ``return` `false``;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{  ` `        ``int` `x = ``5``, y = ``8``, k = ``20``;  ` `     `  `        ``if` `(isPossible(x, y, k))  ` `            ``System.out.println(``"Yes"``);  ` `        ``else` `            ``System.out.println(``"No"``);  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python3

 `# Python3 implementation of the approach ` ` `  `# Function that returns true if it is ` `# possible to move from (0, 0) to ` `# (x, y) in exactly k moves ` `def` `isPossible(x, y, k): ` `     `  `    ``# Minimum moves required ` `    ``minMoves ``=` `abs``(x) ``+` `abs``(y) ` ` `  `    ``# If possible ` `    ``if` `(k >``=` `minMoves ``and` `(k ``-` `minMoves) ``%` `2` `=``=` `0``): ` `        ``return` `True` ` `  `    ``return` `False` ` `  `# Driver code ` `x ``=` `5` `y ``=` `8` `k ``=` `20` ` `  `if` `(isPossible(x, y, k)): ` `    ``print``(``"Yes"``) ` `else``: ` `    ``print``(``"No"``) ` ` `  `# This code is contributed by Mohit Kumar `

## C#

 `// C# implementation of the approach  ` `using` `System; ` `class` `GFG ` `{ ` `     `  `    ``// Function that returns true if it is  ` `    ``// possible to move from (0, 0) to  ` `    ``// (x, y) in exactly k moves  ` `    ``static` `bool` `isPossible(``int` `x, ``int` `y, ``int` `k)  ` `    ``{  ` `        ``// Minimum moves required  ` `        ``int` `minMoves = Math.Abs(x) + Math.Abs(y);  ` `     `  `        ``// If possible  ` `        ``if` `(k >= minMoves && (k - minMoves) % 2 == 0)  ` `            ``return` `true``;  ` `     `  `        ``return` `false``;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main ()  ` `    ``{  ` `        ``int` `x = 5, y = 8, k = 20;  ` `     `  `        ``if` `(isPossible(x, y, k))  ` `            ``Console.Write(``"Yes"``);  ` `        ``else` `            ``Console.Write(``"No"``);  ` `    ``}  ` `} ` ` `  `// This code is contributed by Nidhi `

Output:

```No
```

My Personal Notes arrow_drop_up Budding Web DeveloperKeen learnerAverage CoderDancer&Social Activist

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.