Check if it is possible to create a polygon with given n sides

Given an array arr[] that contain the lengths of n sides that may or may not form a polygon. The task is to determine whether it is possible to form a polygon with all the given sides. Print Yes if possible else print No.

Examples:

Input: arr[] = {2, 3, 4}
Output: Yes



Input: arr[] = {3, 4, 9, 2}
Output: No

Approach: In order to create a polygon with given n sides, there is a certain property that must be satisfied by the sides of the polygon.

Property: The length of the every given side must be less than the sum of the other remaining sides.

Find the largest side among the given sides. Then, check whether it is smaller than the sum of the other sides or not. If it is smaller then print Yes else print No.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that returns true if it is possible
// to form a polygon with the given sides
bool isPossible(int a[], int n)
{
  
    // Sum stores the sum of all the sides
    // and maxS stores the length of
    // the largest side
    int sum = 0, maxS = 0;
    for (int i = 0; i < n; i++) {
        sum += a[i];
        maxS = max(a[i], maxS);
    }
  
    // If the length of the largest side
    // is less than the sum of the
    // other remaining sides
    if ((sum - maxS) > maxS)
        return true;
  
    return false;
}
  
// Driver code
int main()
{
    int a[] = { 2, 3, 4 };
    int n = sizeof(a) / sizeof(a[0]);
  
    if (isPossible(a, n))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function that returns true if it is possible
    // to form a polygon with the given sides
    static boolean isPossible(int a[], int n)
    {
        // Sum stores the sum of all the sides
        // and maxS stores the length of
        // the largest side
        int sum = 0, maxS = 0;
        for (int i = 0; i < n; i++) {
            sum += a[i];
            maxS = Math.max(a[i], maxS);
        }
  
        // If the length of the largest side
        // is less than the sum of the
        // other remaining sides
        if ((sum - maxS) > maxS)
            return true;
  
        return false;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int a[] = { 2, 3, 4 };
        int n = a.length;
  
        if (isPossible(a, n))
            System.out.print("Yes");
        else
            System.out.print("No");
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach 
  
# Function to check whether 
# it is possible to create a 
# polygon with given sides length 
def isPossible(a, n):
    # Sum stores the sum of all the sides
    # and maxS stores the length of 
    # the largest side
    sum = 0
    maxS = 0
    for i in range(n):
        sum += a[i]
        maxS = max(a[i], maxS)
  
    # If the length of the largest side 
    # is less than the sum of the 
    # other remaining sides
    if ((sum - maxS) > maxS):
        return True
      
    return False
  
# Driver code
a =[2, 3, 4]
n = len(a)
  
if(isPossible(a, n)):
    print("Yes")
else:
    print("No")

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
class GFG {
  
    // Function that returns true if it is possible
    // to form a polygon with the given sides
    static bool isPossible(int[] a, int n)
    {
        // Sum stores the sum of all the sides
        // and maxS stores the length of
        // the largest side
        int sum = 0, maxS = 0;
        for (int i = 0; i < n; i++) {
            sum += a[i];
            maxS = Math.Max(a[i], maxS);
        }
  
        // If the length of the largest side
        // is less than the sum of the
        // other remaining sides
        if ((sum - maxS) > maxS)
            return true;
  
        return false;
    }
  
    // Driver code
    static void Main()
    {
        int[] a = { 2, 3, 4 };
        int n = a.Length;
  
        if (isPossible(a, n))
            Console.Write("Yes");
        else
            Console.Write("No");
    }
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP implementation of the approach
  
// Function that returns true if it is possible 
// to form a polygon with the given sides
function isPossible($a, $n
{
    // Sum stores the sum of all the sides
    // and maxS stores the length of 
    // the largest side
    $sum = 0;
    $maxS = 0;
    for ($i = 0; $i < $n; $i++) {
        $sum += $a[$i];
        $maxS = max($a[$i], $maxS);
    }
  
    // If the length of the largest side 
    // is less than the sum of the 
    // other remaining sides
    if (($sum - $maxS) > $maxS)
        return true;
      
    return false;
}
  
// Driver code 
$a = array(2, 3, 4);
$n = count($a);
  
if(isPossible($a, $n))
    echo "Yes";
else
    echo "No";
?>

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.