Skip to content
Related Articles

Related Articles

Improve Article
Number of ways a convex polygon of n+2 sides can split into triangles by connecting vertices
  • Last Updated : 12 Apr, 2021

Given a convex polygon with n+2 sides. The task is to calculate the number of ways in which triangles can be formed by connecting vertices with non-crossing line segments.
Examples: 
 

Input: n = 1 
Output: 1 
It is already a triangle so it can only be formed in 1 way.
Input: n = 2 
Output: 2 
It can be cut into 2 triangles by using either pair of opposite vertices. 
 

 

 



The above problem is an application of a catalan numbers. So, the task is to only find the n’th Catalan Number. First few catalan numbers are 1 1 2 5 14 42 132 429 1430 4862, … (considered from 0th number)
Below is the program to find Nth catalan number: 
 

C++




// C++ program to find the
// nth catalan number
#include <bits/stdc++.h>
using namespace std;
 
// Returns value of Binomial Coefficient C(n, k)
unsigned long int binomialCoeff(unsigned int n,
                                unsigned int k)
{
    unsigned long int res = 1;
 
    // Since C(n, k) = C(n, n-k)
    if (k > n - k)
        k = n - k;
 
    // Calculate value of
    // [n*(n-1)*---*(n-k+1)] / [k*(k-1)*---*1]
    for (int i = 0; i < k; ++i) {
        res *= (n - i);
        res /= (i + 1);
    }
 
    return res;
}
 
// A Binomial coefficient based function
// to find nth catalan
// number in O(n) time
unsigned long int catalan(unsigned int n)
{
    // Calculate value of 2nCn
    unsigned long int c = binomialCoeff(2 * n, n);
 
    // return 2nCn/(n+1)
    return c / (n + 1);
}
 
// Driver code
int main()
{
    int n = 3;
    cout << catalan(n) << endl;
 
    return 0;
}

Java




// Java program to find the
// nth catalan number
class GFG
{
 
// Returns value of Binomial
// Coefficient C(n, k)
static long binomialCoeff(int n,
                          int k)
{
    long res = 1;
 
    // Since C(n, k) = C(n, n-k)
    if (k > n - k)
        k = n - k;
 
    // Calculate value of
    // [n*(n-1)*---*(n-k+1)] /
    // [k*(k-1)*---*1]
    for (int i = 0; i < k; ++i)
    {
        res *= (n - i);
        res /= (i + 1);
    }
 
    return res;
}
 
// A Binomial coefficient
// based function to find
// nth catalan number in
// O(n) time
static long catalan( int n)
{
    // Calculate value of 2nCn
    long c = binomialCoeff(2 * n, n);
 
    // return 2nCn/(n+1)
    return c / (n + 1);
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
    System.out.println(catalan(n));
}
}
 
// This code is contributed
// by Arnab Kundu

Python3




# Python3 program to find the
# nth catalan number
 
# Returns value of Binomial
# Coefficient C(n, k)
def binomialCoeff(n, k):
 
    res = 1;
 
    # Since C(n, k) = C(n, n-k)
    if (k > n - k):
        k = n - k;
 
    # Calculate value of
    # [n*(n-1)*---*(n-k+1)] /
    # [k*(k-1)*---*1]
    for i in range(k):
 
        res *= (n - i);
        res /= (i + 1);
 
    return res;
 
# A Binomial coefficient based
# function to find nth catalan
# number in O(n) time
def catalan(n):
     
    # Calculate value of 2nCn
    c = binomialCoeff(2 * n, n);
 
    # return 2nCn/(n+1)
    return int(c / (n + 1));
 
# Driver code
n = 3;
print(catalan(n));
 
# This code is contributed
# by mits

C#




// C# program to find the
// nth catalan number
using System;
 
class GFG
{
 
// Returns value of Binomial
// Coefficient C(n, k)
static long binomialCoeff(int n,
                          int k)
{
    long res = 1;
 
    // Since C(n, k) = C(n, n-k)
    if (k > n - k)
        k = n - k;
 
    // Calculate value of
    // [n*(n-1)*---*(n-k+1)] /
    // [k*(k-1)*---*1]
    for (int i = 0; i < k; ++i)
    {
        res *= (n - i);
        res /= (i + 1);
    }
 
    return res;
}
 
// A Binomial coefficient
// based function to find
// nth catalan number in
// O(n) time
static long catalan( int n)
{
    // Calculate value of 2nCn
    long c = binomialCoeff(2 * n, n);
 
    // return 2nCn/(n+1)
    return c / (n + 1);
}
 
// Driver code
public static void Main()
{
    int n = 3;
    Console.WriteLine(catalan(n));
}
}
 
// This code is contributed
// by Subhadeep

PHP




<?php
// PHP program to find the
// nth catalan number
 
// Returns value of Binomial
// Coefficient C(n, k)
function binomialCoeff($n, $k)
{
    $res = 1;
 
    // Since C(n, k) = C(n, n-k)
    if ($k > $n - $k)
        $k = $n - $k;
 
    // Calculate value of
    // [n*(n-1)*---*(n-k+1)] /
    // [k*(k-1)*---*1]
    for ($i = 0; $i < $k; ++$i)
    {
        $res *= ($n - $i);
        $res /= ($i + 1);
    }
 
    return $res;
}
 
// A Binomial coefficient based
// function to find nth catalan
// number in O(n) time
function catalan($n)
{
    // Calculate value of 2nCn
    $c = binomialCoeff(2 * $n, $n);
 
    // return 2nCn/(n+1)
    return $c / ($n + 1);
}
 
// Driver code
$n = 3;
echo catalan($n);
 
// This code is contributed
// by chandan_jnu.
?>

Javascript




<script>
// javascript program to find the
// nth catalan number// Returns value of Binomial
// Coefficient C(n, k)
function binomialCoeff(n, k)
{
    var res = 1;
 
    // Since C(n, k) = C(n, n-k)
    if (k > n - k)
        k = n - k;
 
    // Calculate value of
    // [n*(n-1)*---*(n-k+1)] /
    // [k*(k-1)*---*1]
    for (i = 0; i < k; ++i)
    {
        res *= (n - i);
        res /= (i + 1);
    }
    return res;
}
 
// A Binomial coefficient
// based function to find
// nth catalan number in
// O(n) time
function catalan(n)
{
 
    // Calculate value of 2nCn
    var c = binomialCoeff(2 * n, n);
 
    // return 2nCn/(n+1)
    return c / (n + 1);
}
 
// Driver code
 
var n = 3;
document.write(catalan(n));
 
// This code is contributed by Princi Singh
</script>
Output: 
5

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :