Check if array can be sorted by swapping pairs with GCD of set bits count equal to that of the smallest array element
Given an array arr[] consisting of N integers, the task is to check if it is possible to sort the array using the following swap operations:
Swapping of two numbers is valid only if the Greatest Common Divisor of count of set bits of the two numbers is equal to the number of set bits in the smallest element of the array.
If it is possible to sort the array by performing only the above swaps, then print “Yes”. Otherwise, print “No”.
Examples:
Input: arr[] = {2, 3, 5, 7, 6}
Output: Yes
Explanation:
7 and 6 are needed to be swapped to make the array sorted.
7 has 3 set bits and 6 has 2 set bits.
Since GCD(2, 3) = 1, which is equal to the number of set bits in the smallest integer from the array i.e., 2 (1 set bit).
Therefore, the array can be sorted by swapping (7, 6).Input: arr[] = {3, 3, 15, 7}
Output: No
Explanation:
15 and 7 are needed to be swapped to make the array sorted.
15 has 4 set bits and 7 has 3 set bits. GCD(4, 3) = 1, which is not equal to the number of set bits in the smallest integer from the array i.e., 3(2 set bit).
Therefore, the array cannot be sorted.
Approach: Follow the steps below to solve the problem:
- Sort the given array and store it in an auxiliary array(say dup[]).
- Iterate over the array and for every element, check if it is at the same index in both arr[] and dup[] or not. If found to be true, proceed to the next index.
- Otherwise, if swapping of ith and jth position elements is required in arr[] then calculate the GCD of set bits of arr[i] with set bits of arr[j] and check if it is equal to the count of set bits in the smallest element of the array or not.
- If any such swapping is not allowed, print “No”. Otherwise, print “Yes”.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count number of set // bits in an integer int calculateSetBit( int n) { int count = 0; // Traverse every bits for ( int i = 0; i < 32; i++) { if (n & 1) count++; // Right shift by 1 n = n >> 1; } return count; } // Function to check if sorting the // given array is possible or not void sortPossible( int arr[], int n) { // Duplicate array int dup[n]; for ( int i = 0; i < n; i++) dup[i] = arr[i]; // Sorted array to check if the // original array can be sorted sort(dup, dup + n); // Flag variable to check // if possible to sort bool flag = 1; // Calculate bits of smallest // array element int bit = calculateSetBit(dup[0]); // Check every wrong placed // integer in the array for ( int i = 0; i < n; i++) { if (arr[i] != dup[i]) { // Swapping only if GCD of set // bits is equal to set bits in // smallest integer if (__gcd( calculateSetBit(arr[i]), bit) != bit) { flag = 0; break ; } } } // Print the result if (flag) { cout << "Yes" ; } else { cout << "No" ; } return ; } // Driver Code int main() { int arr[] = { 3, 9, 12, 6 }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call sortPossible(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG{ // Recursive function to return // gcd of a and b static int gcd( int a, int b) { // Everything divides 0 if (a == 0 ) return b; if (b == 0 ) return a; // Base case if (a == b) return a; // a is greater if (a > b) return gcd(a - b, b); return gcd(a, b - a); } // Function to count number of set // bits in an integer static int calculateSetBit( int n) { int count = 0 ; // Traverse every bits for ( int i = 0 ; i < 32 ; i++) { if ((n & 1 ) != 0 ) count++; // Right shift by 1 n = n >> 1 ; } return count; } // Function to check if sorting the // given array is possible or not static void sortPossible( int arr[], int n) { // Duplicate array int dup[] = new int [n]; for ( int i = 0 ; i < n; i++) dup[i] = arr[i]; // Sorted array to check if the // original array can be sorted Arrays.sort(dup); // Flag variable to check // if possible to sort int flag = 1 ; // Calculate bits of smallest // array element int bit = calculateSetBit(dup[ 0 ]); // Check every wrong placed // integer in the array for ( int i = 0 ; i < n; i++) { if (arr[i] != dup[i]) { // Swapping only if GCD of set // bits is equal to set bits in // smallest integer if (gcd(calculateSetBit( arr[i]), bit) != bit) { flag = 0 ; break ; } } } // Print the result if (flag != 0 ) { System.out.println( "Yes" ); } else { System.out.println( "No" ); } return ; } // Driver Code public static void main(String[] args) { int arr[] = { 3 , 9 , 12 , 6 }; int N = arr.length; // Function call sortPossible(arr, N); } } // This code is contributed by sanjoy_62 |
Python3
# Python3 program for the above approach from math import gcd # Function to count number of set # bits in an eger def calculateSetBit(n): count = 0 # Traverse every bits for i in range ( 32 ): if (n & 1 ): count + = 1 # Right shift by 1 n = n >> 1 return count # Function to check if sorting the # given array is possible or not def sortPossible(arr, n): # Duplicate array dup = [ 0 ] * n for i in range (n): dup[i] = arr[i] # Sorted array to check if the # original array can be sorted dup = sorted (dup) # Flag variable to check # if possible to sort flag = 1 # Calculate bits of smallest # array element bit = calculateSetBit(dup[ 0 ]) # Check every wrong placed # eger in the array for i in range (n): if (arr[i] ! = dup[i]): # Swapping only if GCD of set # bits is equal to set bits in # smallest eger if (gcd(calculateSetBit(arr[i]), bit) ! = bit): flag = 0 break # Print the result if (flag): print ( "Yes" ) else : print ( "No" ) return # Driver Code if __name__ = = '__main__' : arr = [ 3 , 9 , 12 , 6 ] N = len (arr) # Function call sortPossible(arr, N) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; class GFG{ // Recursive function to return // gcd of a and b static int gcd( int a, int b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // Base case if (a == b) return a; // a is greater if (a > b) return gcd(a - b, b); return gcd(a, b - a); } // Function to count number of set // bits in an integer static int calculateSetBit( int n) { int count = 0; // Traverse every bits for ( int i = 0; i < 32; i++) { if ((n & 1) != 0) count++; // Right shift by 1 n = n >> 1; } return count; } // Function to check if sorting the // given array is possible or not static void sortPossible( int [] arr, int n) { // Duplicate array int [] dup = new int [n]; for ( int i = 0; i < n; i++) dup[i] = arr[i]; // Sorted array to check if the // original array can be sorted Array.Sort(dup); // Flag variable to check // if possible to sort int flag = 1; // Calculate bits of smallest // array element int bit = calculateSetBit(dup[0]); // Check every wrong placed // integer in the array for ( int i = 0; i < n; i++) { if (arr[i] != dup[i]) { // Swapping only if GCD of set // bits is equal to set bits in // smallest integer if (gcd(calculateSetBit( arr[i]), bit) != bit) { flag = 0; break ; } } } // Print the result if (flag != 0) { Console.WriteLine( "Yes" ); } else { Console.WriteLine( "No" ); } return ; } // Driver Code public static void Main() { int [] arr = { 3, 9, 12, 6 }; int N = arr.Length; // Function call sortPossible(arr, N); } } // This code is contributed by sanjoy_62 |
Javascript
<script> // JavaScript program to implement // the above approach // Recursive function to return // gcd of a and b function gcd(a, b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // Base case if (a == b) return a; // a is greater if (a > b) return gcd(a - b, b); return gcd(a, b - a); } // Function to count number of set // bits in an integer function calculateSetBit(n) { let count = 0; // Traverse every bits for (let i = 0; i < 32; i++) { if ((n & 1) != 0) count++; // Right shift by 1 n = n >> 1; } return count; } // Function to check if sorting the // given array is possible or not function sortPossible(arr, n) { // Duplicate array let dup = []; for (let i = 0; i < n; i++) dup[i] = arr[i]; // Sorted array to check if the // original array can be sorted dup.sort(); // Flag variable to check // if possible to sort let flag = 1; // Calculate bits of smallest // array element let bit = calculateSetBit(dup[0]); // Check every wrong placed // integer in the array for (let i = 0; i < n; i++) { if (arr[i] != dup[i]) { // Swapping only if GCD of set // bits is equal to set bits in // smallest integer if (gcd(calculateSetBit( arr[i]), bit) != bit) { flag = 0; break ; } } } // Print the result if (flag != 0) { document.write( "Yes" ); } else { document.write( "No" ); } return ; } // Driver code let arr = [ 3, 9, 12, 6 ]; let N = arr.length; // Function call sortPossible(arr, N); // This code is contributed by target_2. </script> |
Yes
Time Complexity: O(N)
Auxiliary Space: O(N)
Please Login to comment...